我有一个数据集,其值可以绘制为针对y值的x值。 y轴上的数据具有不对称误差,即
我想用线性函数拟合这些数据。 我可以在python中以多种方式做到这一点,但是它们都有同样的问题,也就是如何得到拟合参数的错误。
与this非常相关,但不可能(或至少不是直截了当)使用scipy.optimize.curve_fit,因为我的数据在纵坐标(y轴)上有非对称错误以获得斜率误差同样。
然后,当y误差条不对称时,如何计算线性拟合斜率上的误差?
是否有任何python函数?
答案 0 :(得分:0)
有一篇Barlow + 04 https://arxiv.org/abs/physics/0406120的论文,用于找出具有不对称误差条的变量的均值。你也许可以使用这些技术。
我采用的强力路线是从分裂正态分布(https://en.wikipedia.org/wiki/Split_normal_distribution)中绘制变量的许多实现,并为它们存储最佳拟合多项式参数。然后,我计算每个多项式参数的中位数和1-sigma上/下误差条(分别来自中位数的第84和第16百分位数)。
下面的代码,在Python 2.7.9中,这样做。有一个函数可以计算分裂正态值,来自百分位数的误差和拟合多项式。
希望这会有所帮助。
#! /bin/python
from random import choice, gauss
from numpy import polyfit
def split_normal(mus, sigmas_u68, sigmas_l68):
"""
RET: A split-normal value.
"""
split_normal = []
for mu, sigma_u68, sigma_l68 in zip(mus, sigmas_u68, sigmas_l68):
sigma = choice([sigma_u68, -sigma_l68])
g = abs(gauss(0.0, 1.0)) * sigma + mu
split_normal.append(g)
return split_normal
def errors_84_16(x):
"""
RET: 1-sigma upper/lower error bars from the 84/16th percentile
from the median.
"""
n = len(x)
index_med = n / 2 # median.
index_84 = int(round(n * 0.84135)) # 84th percentile from median.
index_16 = int(round(n * 0.15865))
x_sorted = sorted(x)
x_med = x_sorted[index_med]
x_u68 = x_sorted[index_84] - x_med # 1-sigma upper error.
x_l68 = x_med - x_sorted[index_16] # 1-sigma lower error.
return x_med, x_u68, x_l68
def assymetric_polyfit(x, y, y_u68, y_l68, n_mc=500):
"""
DES: Solves y = a + b * x for assymentric y error bars.
RET: [a, a_u68, a_l68, b, b_u68, b_l68].
"""
a_mc = []
b_mc = []
for i in xrange(0, n_mc):
y_mc = split_normal(y, y_u68, y_l68)
pars = polyfit(x, y_mc, 2)
a_mc.append(pars[2])
b_mc.append(pars[1])
a, a_u68, a_l68 = errors_84_16(a_mc)
b, b_u68, b_l68 = errors_84_16(b_mc)
return a, a_u68, a_l68, b, b_u68, b_l68
def example():
"""
"""
x = [1.0, 2.0, 3.0, 4.0, 5.0]
y = [5.0, 8.0, 11.0, 14.0, 17.0] # 2 + 3x
y_u68 = [0.5, 0.5, 0.5, 0.5, 0.5]
y_l68 = [1.5, 1.5, 1.5, 1.5, 1.5]
pars = assymetric_polyfit(x, y, y_u68, y_l68)
print(pars)
if __name__ == '__main__':
example()