C ++:使用一个条件从set生成所有子集

时间:2014-05-27 02:16:18

标签: c++

我正在尝试编写代码来生成set中的所有子集,其中包含一个条件 如果我有阈值= 2,则设置为3:

1, 2, 3, 4, 5
1,3,5
1,3,4

然后程序将输出:

第一次迭代时的生成集:

1 = number of frequency = 3
2 = number of frequency = 1
3 = number of frequency = 3
4 = number of frequency = 2
5= number of frequency = 2

由于数字2的频率<1。阈值,我将从任何进一步的超集中排除此集合,

第二次迭代时的生成集

1,3 = number of frequency = 3
1,4 = number of frequency = 2
1,5 = number of frequency = 2
3,4 = number of frequency = 2
3,5= number of frequency = 2
4,5= number of frequency = 1

由于数字(4,5)的频率<1。阈值,我将从任何进一步的超集中排除此集合,

第三次迭代的生成集

1,3,4= number of frequency = 2
1,3,5= number of frequency = 2

第四次迭代的生成集

不再是超集,因为(4,5)&lt;我们无法生成的门槛(1,3,4,5)

我编写了程序,我已经生成了所有子集,但是失败了两件事:

  • 我无法在地图std::map <int,std::pair<list<int>, int>> CandList中搜索相似的集合(频率数)
  • 我无法弄清楚如何应用条件

请感谢任何帮助。

这是我的代码:

int threshold = 2;
std::vector<std::list<int>> data;
std::map<int, int> FISupp;
typedef std::pair<list<int>, int> combo;
std::map <int,combo> CandList;
std::list<int> FrqList;



/*
input:Threshold =2, and data=
1 2 3 4 5
1 3 4 5
1 2 3 5
1 3

at first scan after PassOne function:
FISupp(1,4)
FISupp(2,2)
FISupp(3,4)
FISupp(4,4)
FISupp(5,3)

at k scan after Passk function:
---
*/
int Lsize = 2; // Level size

void ScanData()
{
    ifstream in;
    in.open("mydata.txt");
    /* mydata.txt
    1 2 3 4 5
    1 3 4 5
    1 2 3 5
    1 3
    */
    std::string line;
    int i = 0;

    while (std::getline(in, line))
    {
        std::stringstream Sline1(line);
        std::stringstream ss(line);
        std::list<int> inner;
        int info;

        while (ss >> info)
            inner.push_back(info);

        data.push_back(inner);
    }
}


/* first pass to generate first Candidates items */
void PassOne()
{
    for (unsigned i = 0; i < data.size(); ++i)
    {
        std::list<int>::iterator li;

        for (li = data[i].begin(); li != data[i].end(); ++li)
            FISupp[*li] += 1;
    }


    /*update the FFISupp by erasing all first Candidates items  with support < Threshold*/

    std::map<int, int> ::iterator current = FISupp.begin();

    std::list<int> ls; /* save Candidates itemes with support < Threshold*/
    while (current != FISupp.end())
    {
        if (current->second < threshold)
        {
            ls.push_back(current->first);
            current = FISupp.erase(current);
        }
        else
            ++current;
    }


    /*update the the orginal data by erasing all first Candidates items  with support < Threshold*/
    for (unsigned i = 0; i < data.size(); ++i)
    {
        std::list<int>::iterator li;
        std::list<int>::iterator item = ls.begin();

        while (item != ls.end())
        {
            for (li = data[i].begin(); li != data[i].end(); ++li)
            {
                if (*li == *item)
                {
                    li = data[i].erase(li);
                    break;
                }
            }
            ++item;
        }

    }


}


void FrequentItem(list<int> l,   int indx)
{
    int a = 0;
    for (list<int>::iterator it = l.begin(); it != l.end(); ++it)
    {
        //std::list <int> &m2 = CandList[indx].first;

        //auto itr = m2.find(*it);

        //auto itr = std::find(CandList.begin(), CandList.end(), *it);

        auto itr = CandList.find(*it);
        if (itr != CandList.end())
        {
            a += CandList[indx].second;
            CandList[indx].first.push_back(*it);
            CandList[indx].second = a;
        }

    }

}

int ind = 0;
void Passk(int j, std::list<int>::iterator Itm , int q = 0)
{

    if (Lsize == q)
    {
        FrequentItem(FrqList, ind);
        ++ind;
        return;
    }

    else
    {

        for (std::list<int>::iterator Itm2 = Itm; Itm2 != data[j].end(); ++Itm2)
        {
                FrqList.push_back(*Itm2);
                Passk(j,  ++Itm2, q + 1);
                FrqList.pop_back();
                --Itm2;

        }

    }


}



void main(int argc, char *argv[])
{
    int temp = 0;
    int j = -1;

    ScanData();
    PassOne();

    while (Lsize <= data.size()) // How to stop the loop when there is no more candidate >= threshold???
    {
        for (unsigned i = 0; i < data.size(); ++i)
        {
            std::list<int>::iterator items = data[i].begin();
            Passk(++j, items);  
        }

        j = -1;
        ++ Lsize;

    }

    data.clear();
    system("PAUSE");
    return;
}

1 个答案:

答案 0 :(得分:3)

好的,我会尝试回答。但首先是假设:

  • 您正在使用有序集,即元素严格升序。
  • 您考虑“普通”集,即没有可能出现重复元素的多集。
  • 这两个假设可能很容易放松,但我会以此作为基础。

对于这种情况,通过位向量对您的集进行编码可能更自然(例如使用std::vector<bool>boost::dynamic_bitset<>)。在这样的位向量中,如果设置了i - 元素,则意味着集合中存在数字i

例如,您的三个集由此

表示
1 1 1 1 1
1 0 1 0 1
1 0 1 1 0

迭代1 :在第一次迭代中,您只需要对元素求和,这在此表示中相当容易。一个人获得

    1 1 1 1 1
    1 0 1 0 1
    1 0 1 1 0
   -----------
    3 1 3 2 2

接下来,您丢弃低于阈值的所有元素,这只是将第二行设置为零:

    1 0 1 1 1
    1 0 1 0 1
    1 0 1 1 0

迭代K :在这里,您计算所有K子集的出现次数,如果它们的数量小于阈值则丢弃它们。也就是说,正式地,你生成了K-stencils

{ 1 1 0 0 0, 1 0 1 0 0, ... , 0 0 0 1 1}   (for K=2)
{ 1 1 1 0 0, 1 1 0 1 0, ... , 0 0 1 1 1}   (for K=3)

等等。对于这些K - 模板中的每一个,您计算出现并最终丢弃(注意K也可能是一个)。所以,你有三个任务,即

  1. 生成:是通过初始位向量{1 ... 1 0 ... 0}的排列获得的,其中K元素在左侧排序。

  2. 计数:循环遍历集合的向量,并使用按位and检查当前向量是否包含模板。例如:1 0 1 1 1 & 0 0 0 1 1 == 0 0 0 1 1

  3. 丢弃:通过按位and应用反向模板(通过flip()进行反转)。这将删除相关的子集。最后丢弃小于迭代次数的任何子集(例如,在迭代3中,删除大小为2的子集)。

  4. 这是一个主要使用boost::dynamic_bitset<>,但std::vector<bool>用于排列的实现(因为我不想自己编码排列,但这当然可以改进)。请注意,没有地图或其他更复杂的存储方案:

    #include<vector>
    #include<iostream>
    #include<algorithm>
    #include<string>
    #include<sstream>
    #include<boost/dynamic_bitset.hpp>
    
    //only for nice output of a bitset
    std::string screenOutput(const boost::dynamic_bitset<>& bits)
    {
        int n=bits.size();
        std::string ret;
        for(int i=n-1;i>=0;--i)
        {
            if(bits[i])
            {
               std::stringstream out;
               out<<i+1<<" ";
               ret=out.str()+ret;
            }
        }
        return "{"+ret+"}";
    }
    
    //function implementing the actual logic
    void removeSubsets(std::vector<boost::dynamic_bitset<> > &currentSet, size_t K, size_t thresh)
    {
        size_t n=currentSet.front().size();
    
        //create initial stencil {1 ... 1 0 ... 0}
        std::vector<bool> stencil(n);
        for(size_t i=0;i<K;++i)
            stencil[i]=true;
    
        //apply permutations to initial stencil
        do
        {
             //generate dynamic_bitset from permuted vector<bool>
             boost::dynamic_bitset<> temp(n);
             for(size_t i=0;i<n;++i)
                  temp[i]=stencil[i];
    
             //count the occurence of the stencil
             size_t count=0;
             for(size_t j=0;j<currentSet.size();++j)
             {
                  if((currentSet[j] & temp) == temp)
                     ++count;
             }
    
             //remove if at least one and less than thresh is found
             if(count<thresh && count>0)
             {
                  boost::dynamic_bitset<> tempFlip=temp;
                  tempFlip.flip();
                  for(size_t j=0;j<currentSet.size();++j)
                  {
                        //remove stencil from all bitset which contain it
                        if((currentSet[j] & temp) == temp)
                          currentSet[j]= (currentSet[j] & tempFlip);
                  }
             }
        }
        while(std::prev_permutation(stencil.begin(),stencil.end()));
    
        //further remove all supersets which contain less than K elements
        for(size_t j=0;j<currentSet.size();++j)
             if(currentSet[j].count()<K)
             {
                   currentSet[j]=boost::dynamic_bitset<>(n,0);
             }
    }
    

    代码可以像这样使用:

    int main()
    {
        //initialize set of three bit-vectors (all elements to true)
        std::vector<boost::dynamic_bitset<> > yourSet(3, boost::dynamic_bitset<>(5, (1<<5)-1) );
    
        //set corresponding elements to false
        yourSet[1][1]=false;
        yourSet[1][3]=false;
        yourSet[2][1]=false;
        yourSet[2][4]=false;
    
        std::cout<<"Original sets"<<std::endl;
        for(size_t i=0;i<3;++i)
            std::cout<<screenOutput(yourSet[i])<<std::endl;
        std::cout<<std::endl;
    
        removeSubsets(yourSet, 1, 2);
        std::cout<<"After iteration 1:"<<std::endl;
        for(size_t i=0;i<3;++i)
            std::cout<<screenOutput(yourSet[i])<<std::endl;
        std::cout<<std::endl;
    
        removeSubsets(yourSet, 2, 2);
        std::cout<<"After iteration 2:"<<std::endl;
        for(size_t i=0;i<3;++i)
            std::cout<<screenOutput(yourSet[i])<<std::endl;
        std::cout<<std::endl;
    
        removeSubsets(yourSet, 3, 2);
        std::cout<<"After iteration 3:"<<std::endl;
        for(size_t i=0;i<3;++i)
            std::cout<<screenOutput(yourSet[i])<<std::endl;
        std::cout<<std::endl;
    }
    

    输出:

    Original set:
    {1 2 3 4 5}
    {1 3 5}
    {1 3 4}
    
    After iteration 1:
    {1 3 4 5}
    {1 3 5}
    {1 3 4}
    
    After iteration 2:
    {}
    {1 3 5}
    {1 3 4}
    
    After iteration 3:
    {}
    {}
    {}
    

    伙计,我显然有太多时间。


    编辑:更正后的代码。仍然你必须检查它是否真正带来你想要的东西。