我在这里使用选择性搜索:http://koen.me/research/selectivesearch/
这给出了对象可能存在的感兴趣区域。我想进行一些处理并仅保留一些区域,然后删除重复的边界框以获得最终整齐的边界框集合。要丢弃不需要/重复的边界框区域,我使用opencv的grouprectangles
函数进行修剪。
一旦我从上面链接中的“选择性搜索算法”中获取Matlab中的有趣区域,我将结果保存在.mat
文件中,然后在python程序中检索它们,如下所示:
import scipy.io as sio
inboxes = sio.loadmat('C:\\PATH_TO_MATFILE.mat')
candidates = np.array(inboxes['boxes'])
# candidates is 4 x N array with each row describing a bounding box like this:
# [rowBegin colBegin rowEnd colEnd]
# Now I will process the candidates and retain only those regions that are interesting
found = [] # This is the list in which I will retain what's interesting
for win in candidates:
# doing some processing here, and if some condition is met, then retain it:
found.append(win)
# Now I want to store only the interesting regions, stored in 'found',
# and prune unnecessary bounding boxes
boxes = cv2.groupRectangles(found, 1, 2) # But I get an error here
错误是:
boxes = cv2.groupRectangles(found, 1, 2)
TypeError: Layout of the output array rectList is incompatible with cv::Mat (step[ndims-1] != elemsize or step[1] != elemsize*nchannels)
怎么了? 我在另一段代码中做了非常类似的事情,没有给出任何错误。这是无错误的代码:
inboxes = sio.loadmat('C:\\PATH_TO_MY_FILE\\boxes.mat')
boxes = np.array(inboxes['boxes'])
pruned_boxes = cv2.groupRectangles(boxes.tolist(), 100, 300)
我能看到的唯一区别是boxes
是一个numpy数组,然后我将其转换为列表。但在我有问题的代码中,found
已经是一个列表。
答案 0 :(得分:46)
我自己的解决方案只是问一个原始数组的副本......(上帝和加里布拉兹基知道为什么......)
im = dbimg[i]
bb = boxes[i]
m = im.transpose((1, 2, 0)).astype(np.uint8).copy()
pt1 = (bb[0],bb[1])
pt2 = (bb[0]+bb[2],bb[1]+bb[3])
cv2.rectangle(m,pt1,pt2,(0,255,0),2)
答案 1 :(得分:12)
另一个原因可能是阵列不连续。使其连续也将解决问题
image = np.ascontiguousarray(image, dtype=np.uint8)
答案 2 :(得分:4)
解决方案是首先将found
转换为numpy数组,然后将其重新转换为列表:
found = np.array(found)
boxes = cv2.groupRectangles(found.tolist(), 1, 2)
答案 3 :(得分:3)
Opencv似乎有问题绘制到数据类型为np.int64
的numpy数组,这是np.array
和np.full
等方法返回的默认数据类型:
>>> canvas = np.full((256, 256, 3), 255)
>>> canvas
array([[255, 255, 255],
[255, 255, 255],
[255, 255, 255]])
>>> canvas.dtype
dtype('int64')
>>> cv2.rectangle(canvas, (0, 0), (2, 2), (0, 0, 0))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
TypeError: Layout of the output array img is incompatible with cv::Mat (step[ndims-1] != elemsize or step[1] != elemsize*nchannels)
解决方案是首先将数组转换为np.int32
:
>>> cv2.rectangle(canvas.astype(np.int32), (0, 0), (2, 2), (0, 0, 0))
array([[ 0, 0, 0],
[ 0, 255, 0],
[ 0, 0, 0]], dtype=int32)
答案 4 :(得分:0)
仅出于完整性考虑,似乎我们许多人都使用了上面的Etienne Perot的解决方案,减去.copy()
。将数组类型转换为int就足够了。例如,当使用霍夫变换时:
# Define the Hough transform parameters
rho,theta,threshold,min,max = 1, np.pi/180, 30, 40, 60
image = ima.astype(np.uint8) # assuming that ima is an image.
# Run Hough on edge detected image
lines = cv2.HoughLinesP(sob, rho, theta, threshold, np.array([]), min, max)
# Iterate over the output "lines" and draw lines on the blank
line_image = np.array([[0 for col in range(x)] for row in range(y)]).astype(np.uint8)
for line in lines: # lines are series of (x,y) coordinates
for x1,y1,x2,y2 in line:
cv2.line(line_image, (x1,y1), (x2,y2), (255,0,0), 10)
只有这样,才能使用plt.imshow()