考虑以下liblinear(http://liblinear.bwaldvogel.de/)的用法:
double C = 1.0; // cost of constraints violation
double eps = 0.01; // stopping criteria
Parameter param = new Parameter(SolverType.L2R_L2LOSS_SVC, C, eps);
Problem problem = new Problem();
double[] GROUPS_ARRAY = {1, 0, 0, 0};
problem.y = GROUPS_ARRAY;
int NUM_OF_TS_EXAMPLES = 4;
problem.l = NUM_OF_TS_EXAMPLES;
problem.n = 2;
FeatureNode[] instance1 = { new FeatureNode(1, 1), new FeatureNode(2, 1) };
FeatureNode[] instance2 = { new FeatureNode(1, -1), new FeatureNode(2, 1) };
FeatureNode[] instance3 = { new FeatureNode(1, -1), new FeatureNode(2, -1) };
FeatureNode[] instance4 = { new FeatureNode(1, 1), new FeatureNode(2, -1) };
FeatureNode[] instance5 = { new FeatureNode(1, 1), new FeatureNode(2, -0.1) };
FeatureNode[] instance6 = { new FeatureNode(1, -0.1), new FeatureNode(2, 1) };
FeatureNode[] instance7 = { new FeatureNode(1, -0.1), new FeatureNode(2, -0.1) };
FeatureNode[][] testSetWithUnknown = {
instance5,
instance6,
instance7
};
FeatureNode[][] trainingSetWithUnknown = {
instance1,
instance2,
instance3,
instance4
};
problem.x = trainingSetWithUnknown;
Model m = Linear.train(problem, param);
for( int i = 0; i < trainingSetWithUnknown.length; i++)
System.out.println(" Train.instance = " + i + " => " + Linear.predict(m, trainingSetWithUnknown[i]) );
System.out.println("---------------------");
for( int i = 0; i < testSetWithUnknown.length; i++)
System.out.println(" Test.instance = " + i + " => " + Linear.predict(m, testSetWithUnknown[i]) );
这是输出:
iter 1 act 1.778e+00 pre 1.778e+00 delta 6.285e-01 f 4.000e+00 |g| 5.657e+00 CG 1
Train.instance = 0 => 1.0
Train.instance = 1 => 0.0
Train.instance = 2 => 0.0
Train.instance = 3 => 0.0
---------------------
Test.instance = 0 => 1.0
Test.instance = 1 => 1.0
Test.instance = 2 => 0.0
我需要概率预测,而不是整数(硬)预测。命令行有一个选项-b,但我找不到任何可以在代码中直接使用该函数的东西。另外,查看代码(https://github.com/bwaldvogel/liblinear-java/blob/master/src/main/java/de/bwaldvogel/liblinear/Predict.java);显然,通过在代码中直接使用,没有概率预测的选项。那是对的吗?
更新:我最终使用了liblinear代码形式https://github.com/bwaldvogel/liblinear-java。在Predict.java文件中,我改变了
private static boolean flag_predict_probability = true;
到
private static boolean flag_predict_probability = false;
并使用
SolverType.L2R_LR
但仍然得到整数类。有什么想法吗?
答案 0 :(得分:1)
要使用概率,需要更改代码。预测是在
内完成的public static double predictValues(Model model,Feature [] x,double [] dec_values){
Linear.java文件中的函数:
if (model.nr_class == 2) {
System.out.println("Two classes ");
if (model.solverType.isSupportVectorRegression()) {
System.out.println("Support vector");
return dec_values[0];
}
else {
System.out.println("Not Support vector");
return (dec_values[0] > 0) ? model.label[0] : model.label[1];
}
}
需要更改为
if (model.nr_class == 2) {
System.out.println("Two classes ");
if (model.solverType.isSupportVectorRegression()) {
System.out.println("Support vector");
return dec_values[0];
}
else {
System.out.println("Not Support vector");
return dec_values[0];
}
}
请注意,输出仍然不是概率,而只是权重和特征值的线性组合。如果你将它赋予softmax函数,它将成为[0,1]中的概率。
此外,请务必选择Logistic回归:
SolverType.L2R_LR