假设我有两个非常大的矩阵A
(M-by-N)和B
(N-by-M)。我需要A*B
的对角线。计算完全A*B
需要M * M * N次乘法,而计算它的对角线只需要M * N次乘法,因为不需要计算最终会在对角线之外的元素。
MATLAB是否自动实现了这一点并实时优化diag(A*B)
,或者我最好在这种情况下使用for循环?
答案 0 :(得分:11)
还可以将diag(A*B)
实施为sum(A.*B',2)
。让我们根据此问题的建议对此进行基准测试以及所有其他实现/解决方案。
下面列出了作为函数实现的不同方法,用于基准测试:
求和方法-1
function out = sum_mult_method1(A,B)
out = sum(A.*B',2);
Sum-multiplication method-2
function out = sum_mult_method2(A,B)
out = sum(A.'.*B).';
For-loop方法
function out = for_loop_method(A,B)
M = size(A,1);
out = zeros(M,1);
for i=1:M
out(i) = A(i,:) * B(:,i);
end
完整/直接乘法
function out = direct_mult_method(A,B)
out = diag(A*B);
Bsxfun-方法
function out = bsxfun_method(A,B)
out = sum(bsxfun(@times,A,B.'),2);
基准代码
num_runs = 1000;
M_arr = [100 200 500 1000];
N = 4;
%// Warm up tic/toc.
tic();
elapsed = toc();
tic();
elapsed = toc();
for k2 = 1:numel(M_arr)
M = M_arr(k2);
fprintf('\n')
disp(strcat('*** Benchmarking sizes are M =',num2str(M),' and N = ',num2str(N)));
A = randi(9,M,N);
B = randi(9,N,M);
disp('1. Sum-multiplication method-1');
tic
for k = 1:num_runs
out1 = sum_mult_method1(A,B);
end
toc
clear out1
disp('2. Sum-multiplication method-2');
tic
for k = 1:num_runs
out2 = sum_mult_method2(A,B);
end
toc
clear out2
disp('3. For-loop method');
tic
for k = 1:num_runs
out3 = for_loop_method(A,B);
end
toc
clear out3
disp('4. Direct-multiplication method');
tic
for k = 1:num_runs
out4 = direct_mult_method(A,B);
end
toc
clear out4
disp('5. Bsxfun method');
tic
for k = 1:num_runs
out5 = bsxfun_method(A,B);
end
toc
clear out5
end
<强>结果
*** Benchmarking sizes are M =100 and N =4
1. Sum-multiplication method-1
Elapsed time is 0.015242 seconds.
2. Sum-multiplication method-2
Elapsed time is 0.015180 seconds.
3. For-loop method
Elapsed time is 0.192021 seconds.
4. Direct-multiplication method
Elapsed time is 0.065543 seconds.
5. Bsxfun method
Elapsed time is 0.054149 seconds.
*** Benchmarking sizes are M =200 and N =4
1. Sum-multiplication method-1
Elapsed time is 0.009138 seconds.
2. Sum-multiplication method-2
Elapsed time is 0.009428 seconds.
3. For-loop method
Elapsed time is 0.435735 seconds.
4. Direct-multiplication method
Elapsed time is 0.148908 seconds.
5. Bsxfun method
Elapsed time is 0.030946 seconds.
*** Benchmarking sizes are M =500 and N =4
1. Sum-multiplication method-1
Elapsed time is 0.033287 seconds.
2. Sum-multiplication method-2
Elapsed time is 0.026405 seconds.
3. For-loop method
Elapsed time is 0.965260 seconds.
4. Direct-multiplication method
Elapsed time is 2.832855 seconds.
5. Bsxfun method
Elapsed time is 0.034923 seconds.
*** Benchmarking sizes are M =1000 and N =4
1. Sum-multiplication method-1
Elapsed time is 0.026068 seconds.
2. Sum-multiplication method-2
Elapsed time is 0.032850 seconds.
3. For-loop method
Elapsed time is 1.775382 seconds.
4. Direct-multiplication method
Elapsed time is 13.764870 seconds.
5. Bsxfun method
Elapsed time is 0.044931 seconds.
中级结论
看起来sum-multiplication
方法是最好的方法,但bsxfun
方法似乎是在M
从100增加到1000时赶上它们。
接下来,仅使用sum-multiplication
和bsxfun
方法测试了更高的基准测试大小。尺寸是 -
M_arr = [1000 2000 5000 10000 20000 50000];
结果是 -
*** Benchmarking sizes are M =1000 and N =4
1. Sum-multiplication method-1
Elapsed time is 0.030390 seconds.
2. Sum-multiplication method-2
Elapsed time is 0.032334 seconds.
5. Bsxfun method
Elapsed time is 0.047377 seconds.
*** Benchmarking sizes are M =2000 and N =4
1. Sum-multiplication method-1
Elapsed time is 0.040111 seconds.
2. Sum-multiplication method-2
Elapsed time is 0.045132 seconds.
5. Bsxfun method
Elapsed time is 0.060762 seconds.
*** Benchmarking sizes are M =5000 and N =4
1. Sum-multiplication method-1
Elapsed time is 0.099986 seconds.
2. Sum-multiplication method-2
Elapsed time is 0.103213 seconds.
5. Bsxfun method
Elapsed time is 0.117650 seconds.
*** Benchmarking sizes are M =10000 and N =4
1. Sum-multiplication method-1
Elapsed time is 0.375604 seconds.
2. Sum-multiplication method-2
Elapsed time is 0.273726 seconds.
5. Bsxfun method
Elapsed time is 0.226791 seconds.
*** Benchmarking sizes are M =20000 and N =4
1. Sum-multiplication method-1
Elapsed time is 1.906839 seconds.
2. Sum-multiplication method-2
Elapsed time is 1.849166 seconds.
5. Bsxfun method
Elapsed time is 1.344905 seconds.
*** Benchmarking sizes are M =50000 and N =4
1. Sum-multiplication method-1
Elapsed time is 5.159177 seconds.
2. Sum-multiplication method-2
Elapsed time is 5.081211 seconds.
5. Bsxfun method
Elapsed time is 3.866018 seconds.
替代基准测试代码(带有`timeit)
num_runs = 1000;
M_arr = [1000 2000 5000 10000 20000 50000 100000 200000 500000 1000000];
N = 4;
timeall = zeros(5,numel(M_arr));
for k2 = 1:numel(M_arr)
M = M_arr(k2);
A = rand(M,N);
B = rand(N,M);
f = @() sum_mult_method1(A,B);
timeall(1,k2) = timeit(f);
clear f
f = @() sum_mult_method2(A,B);
timeall(2,k2) = timeit(f);
clear f
f = @() bsxfun_method(A,B);
timeall(5,k2) = timeit(f);
clear f
end
figure,
hold on
plot(M_arr,timeall(1,:),'-ro')
plot(M_arr,timeall(2,:),'-ko')
plot(M_arr,timeall(5,:),'-.b')
legend('sum-method1','sum-method2','bsxfun-method')
xlabel('M ->')
ylabel('Time(sec) ->')
<强>剧情强>
最终结论
似乎sum-multiplication
方法在某个阶段很好,大约是M=5000
标记,之后bsxfun
似乎有轻微的上风。
未来工作
可以研究不同的N
并研究这里提到的实现的性能。
答案 1 :(得分:4)
是的,这是for循环更好的罕见情况之一。
我通过探查器运行以下脚本:
M = 5000;
N = 5000;
A = rand(M, N); B = rand(N, M);
product = A*B;
diag1 = diag(product);
A = rand(M, N); B = rand(N, M);
diag2 = diag(A*B);
A = rand(M, N); B = rand(N, M);
diag3 = zeros(M,1);
for i=1:M
diag3(i) = A(i,:) * B(:,i);
end
我在每次测试之间重置A和B,以防MATLAB试图通过缓存加速任何事情。
结果(为简洁起见编辑):
time calls line
6.29 1 5 product = A*B;
< 0.01 1 6 diag1 = diag(product);
5.46 1 9 diag2 = diag(A*B);
1 12 diag3 = zeros(M,1);
1 13 for i=1:M
0.52 5000 14 diag3(i) = A(i,:) * B(:,i);
< 0.01 5000 15 end
正如我们所看到的,在这种情况下,for循环变量比其他两个变量快一个数量级。虽然diag(A*B)
变体实际上比diag(product)
变体更快,但它最多只是边缘。
我尝试了一些不同的M和N值,在我的测试中,只有当M = 1时,for循环变量才会变慢。
答案 2 :(得分:3)
实际上, 可以<{1}}循环使用bsxfun
的奇迹更快地执行此操作:
for
这大约是我的机器上显式diag4 = sum(bsxfun(@times,A,B.'),2)
循环的两倍,对于大型矩阵(2,000乘2,000和更大),对于大于500 x 500的矩阵来说速度更快。
请注意,由于求和和乘法的顺序不同,所有这些方法都会产生数值上不同的结果。
答案 3 :(得分:3)
您只能计算没有循环的对角元素:只需使用
sum(A.'.*B).'
或
sum(A.*B.',2)