我有一个数据框,它是工厂的生产数据。工厂分为几个部分。数据的结构使得其中一列包含正确认为是标题的重复值。我需要重塑数据。所以在下面的DataFrame中,'质量'列包含4个度量,然后每小时测量一次。显然,这给了我们每行四个观测值。
这里的目标是转置这些数据,但是有些列是单索引而有些是多索引。行索引应保留['日期',' ID']。单个索引列应该是' line_no',' floor','买方'多指标列应该是每种质量指标的每小时量度。
我知道这是可能的,因为我不小心偶然发现了它。基本上,正如我的代码所示,我将所有内容都放在索引中,除了每小时数据,然后从索引中取消堆栈质量列。然后偶然,我试图重置索引,它创建了这个惊人的数据框架,其中一些列是单索引和一些多。当然,在索引中加载大量列是非常不切实际的,因为我们可能想要用它们做一些事情,比如改变它们。我的问题是如何实现这种类型的事情,而不必经历这个(我觉得是什么)的工作方式。
import random
import pandas as pd
d = {'ID' : [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3] * 2,
'Date' : ['2013-05-04' for x in xrange(12)] + \
['2013-05-06' for x in xrange(12)],
'line_no' : [1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3] * 2,
'floor' : [5, 5, 5, 5, 6, 6, 6, 6, 5, 5, 5, 5] * 2,
'buyer' : ['buyer1', 'buyer1', 'buyer1', 'buyer1',\
'buyer2', 'buyer2', 'buyer2', 'buyer2',\
'buyer1', 'buyer1', 'buyer1', 'buyer1'] * 2,
'Quality' : ['no_checked', 'good', 'alter', 'rejected'] * 6,
'Hour1' : [random.randint(1000, 15000) for x in xrange(24)],
'Hour2' : [random.randint(1000, 15000) for x in xrange(24)],
'Hour3' : [random.randint(1000, 15000) for x in xrange(24)],
'Hour4' : [random.randint(1000, 15000) for x in xrange(24)],
'Hour5' : [random.randint(1000, 15000) for x in xrange(24)],
'Hour6' : [random.randint(1000, 15000) for x in xrange(24)]}
DF = pd.DataFrame(d, columns = ['ID', 'Date', 'line_no', 'floor', 'buyer',
'Quality', 'Hour1', 'Hour2', 'Hour3', 'Hour4',
'Hour5', 'Hour6'])
DF.set_index(['Date', 'ID'])
所以这就是我实现我想要的方式,但必须有一种方法可以做到这一点,而无需完成所有这些步骤。请帮忙......
# Reset the index
DF.reset_index(inplace = True)
# Put everything in the index
DF.set_index(['Date', 'ID', 'line_no', 'floor', 'buyer', 'Quality'], inplace = True)
# Unstack Quality
DFS = DF.unstack('Quality')
#Now this was the accidental workaround - gives exactly the result I want
DFS.reset_index(inplace = True)
DFS.set_index(['Date', 'ID'], inplace = True)
所有帮助表示赞赏。很抱歉这个问题很长,但至少有一些数据可以使用!
答案 0 :(得分:1)
一般来说inplace
操作速度不快,恕我直言也不太可读。
In [18]: df.set_index(['Date','ID','Quality']).unstack('Quality'))
Out[18]:
line_no floor buyer Hour1 Hour2 Hour3 Hour4 Hour5 Hour6
Quality alter good no_checked rejected alter good no_checked rejected alter good no_checked rejected alter good no_checked rejected alter good no_checked rejected alter good no_checked rejected
Date ID
2013-05-04 1 1 5 buyer1 6920 8681 9317 14631 5739 2112 4211 12026 13577 1855 13884 12710 7250 2540 1948 7116 9874 7302 10961 8251 3070 2793 14293 10895
2 2 6 buyer2 7943 7501 13725 1648 7178 9670 6278 6888 9969 11766 9968 4722 7242 4049 6704 2225 6546 8688 11513 14550 2140 11941 1142 6683
3 3 5 buyer1 5155 2449 13648 2183 14184 7309 1185 10454 11742 14102 2242 14297 6185 5554 12505 13312 3062 7426 4421 5693 12342 11622 10431 13375
2013-05-06 1 1 5 buyer1 14563 1343 14419 3350 8526 1185 5244 14777 2238 3640 6717 1109 7777 13136 1732 8681 14454 1059 10606 6942 9349 4524 13931 11799
2 2 6 buyer2 14837 9524 8453 6074 11516 12356 9651 10650 15000 11374 4690 10914 1857 3231 14627 6590 6503 9268 13108 8581 8448 12013 14175 10783
3 3 5 buyer1 9032 12959 4613 6793 7918 2827 6027 13002 11771 13370 12767 11080 12624 13269 11740 10543 8609 14709 11921 12484 8670 12706 8001 8991
[6 rows x 27 columns]
对于你正在做的事情是一个非常合理的习语