所以我有一本字典:
LCM_SCS = {
(1, "A"): 36, (1, "B"): 60, (1, "C"): 73, (1, "D"): 79,
(2, "A"): 36, (2, "B"): 60, (2, "C"): 73, (2, "D"): 79,
(3, "A"): 74, (3, "B"): 83, (3, "C"): 88, (3, "D"): 90,
(4, "A"): 68, (4, "B"): 79, (4, "C"): 86, (4, "D"): 89,
(5, "A"): 30, (5, "B"): 58, (5, "C"): 71, (5, "D"): 78,
(6, "A"): 39, (6, "B"): 61, (6, "C"): 74, (6, "D"): 80,
(7, "A"): 39, (7, "B"): 61, (7, "C"): 74, (7, "D"): 80,
(8, "A"): 39, (8, "B"): 61, (8, "C"): 74, (8, "D"): 80,
(10, "A"): 30, (10, "B"): 48, (10, "C"): 65, (10, "D"): 73,
我还有两个组合的数组给出了我上面字典的元组键:
数组1:
array1 = np.array([[1, 1, 1],
[2, 2, 3],
[2, 4, 5]])
数组2:
array2 = np.array([["A", "A", "A"],
["B", "B", "B"],
["C", "C", "C"]])
我的代码是:
Numbers = np.empty_like(array1)
for [x, y], (value1, value2) in np.ndenumerate(izip(array1, array2)):
CN_numbers[x, y] = LCM_SCS.get((value1, value2))
return Numbers
此代码不起作用。我想得到的是一个如下所示的数组:
Numbers = array([[36, 36, 36],
[60, 60, 83],
[73, 86, 71]])
所以基本上我有两个数组包含要用作查找字典的键的值,我不知道如何在代码中实现它。
任何建议或帮助将不胜感激。
谢谢,
尼克
使用vectorise的解决方案:
a_new = np.empty_like(array1)
def get_CN_numbers(a1, a2):
return LCM_SCS[(a1, a2)] # your basic scalar-operation
V_get_CN = np.vectorize(get_CN_numbers)
a_new = V_get_CN(array1, array2)
print a_new
答案 0 :(得分:3)
@numpy.vectorize
def get_CN_numbers(a1, a2):
return LCM_SCS[(a1,a2)] # your basic scalar-operation
get_CN_numbers(array1, array2)
=>
array([[36, 36, 36],
[60, 60, 83],
[73, 86, 71]])
通常,使用vectorize
是扩展标量操作的简单方法(在您的情况下,通过标量键从dict获取值)来处理数组(在您的情况下,两个键的数组) )。正如你已经发现的那样,vectorize
照顾你的棘手部分是保持形状。
这提供了简单性,但不一定是速度,因为vectorize
是使用python-space循环实现的。
答案 1 :(得分:2)
试试这个:
>>> new_array = np.rec.fromarrays((array1,array2),names='x,y') # This will generate all keys that you'll look value for.
>>> print new_array
[[(1, 'A') (1, 'A') (1, 'A')]
[(2, 'B') (2, 'B') (3, 'B')]
[(2, 'C') (4, 'C') (5, 'C')]]
>>> result = np.zeros([3,3],dtype=int) #Having issue to modify directly on new_array so I initialized a new numpy array to store result
>>> for (x,y), value in np.ndenumerate(new_array):
result[x][y] = LCM_SCS[tuple(value)]
>>> print result
[[36 36 36]
[60 60 83]
[73 86 71]]
答案 2 :(得分:0)
LCM_SCS = {
(1, "A"): 36, (1, "B"): 60, (1, "C"): 73, (1, "D"): 79,
(2, "A"): 36, (2, "B"): 60, (2, "C"): 73, (2, "D"): 79,
(3, "A"): 74, (3, "B"): 83, (3, "C"): 88, (3, "D"): 90,
(4, "A"): 68, (4, "B"): 79, (4, "C"): 86, (4, "D"): 89,
(5, "A"): 30, (5, "B"): 58, (5, "C"): 71, (5, "D"): 78,
(6, "A"): 39, (6, "B"): 61, (6, "C"): 74, (6, "D"): 80,
(7, "A"): 39, (7, "B"): 61, (7, "C"): 74, (7, "D"): 80,
(8, "A"): 39, (8, "B"): 61, (8, "C"): 74, (8, "D"): 80,
(10, "A"): 30, (10, "B"): 48, (10, "C"): 65, (10, "D"): 73}
array1 = np.array([[1, 1, 1], [2, 2, 3], [2, 4, 5]]).tolist()
array2 = np.array([["A", "A", "A"], ["B", "B", "B"], ["C", "C", "C"]]).tolist()
array1 = [y for sub in array1 for y in sub]
array2 = [y for sub in array2 for y in sub]
results = [LCM_SCS[(array1[k], array2[k])] for k in range(len(array1))]
<强>输出:强>
[36, 36, 36, 60, 60, 83, 73, 86, 71]
您可以根据需要将其转换为列表列表,甚至可以将其设为np.array()
。