Python:通过窗口化的高通FIR滤波器

时间:2014-04-28 12:47:07

标签: python filter windowing

我想在Python中通过Windowing创建一个基本的高通FIR滤波器。

我的代码在下面并且是故意惯用的 - 我知道你可以(很可能)用Python中的一行代码来完成这个,但我正在学习。我使用了带矩形窗口的基本sinc函数:我的输出适用于加法(f1 + f2)但不是乘法(f1 * f2)的信号,其中f1 = 25kHz,f2 = 1MHz。

我的问题是:我误解了一些基本的东西还是我的代码错了? 总之,我想提取高通信号(f2 = 1MHz)并过滤掉其他所有信号。我还包括为(f1 + f2)和(f1 * f2)生成的屏幕截图:

enter image description here

import numpy as np
import matplotlib.pyplot as plt

# create an array of 1024 points sampled at 40MHz
# [each sample is 25ns apart]
Fs = 40e6
T  = 1/Fs
t  = np.arange(0,(1024*T),T)

# create an ip signal sampled at Fs, using two frequencies 
F_low  = 25e3 #  25kHz
F_high = 1e6  #  1MHz
ip = np.sin(2*np.pi*F_low*t) + np.sin(2*np.pi*F_high*t)
#ip = np.sin(2*np.pi*F_low*t) * np.sin(2*np.pi*F_high*t)
op = [0]*len(ip)


# Define -
# Fsample = 40MHz
# Fcutoff = 900kHz,
# this gives the normalised transition freq, Ft
Fc = 0.9e6
Ft = Fc/Fs
Length       = 101
M            = Length - 1
Weight       = []
for n in range(0, Length):
    if( n != (M/2) ):
        Weight.append( -np.sin(2*np.pi*Ft*(n-(M/2))) / (np.pi*(n-(M/2))) )
    else:
        Weight.append( 1-2*Ft )




for n in range(len(Weight), len(ip)):
    y = 0
    for i in range(0, len(Weight)):
        y += Weight[i]*ip[n-i]
    op[n] = y


plt.subplot(311)
plt.plot(Weight,'ro', linewidth=3)
plt.xlabel( 'weight number' )
plt.ylabel( 'weight value' )
plt.grid()

plt.subplot(312)
plt.plot( ip,'r-', linewidth=2)
plt.xlabel( 'sample length' )
plt.ylabel( 'ip value' )
plt.grid()

plt.subplot(313)
plt.plot( op,'k-', linewidth=2)
plt.xlabel( 'sample length' )
plt.ylabel( 'op value' )
plt.grid()
plt.show()

1 个答案:

答案 0 :(得分:3)

你误解了一些基本的东西。窗口sinc滤波器设计用于分离线性组合频率;即通过加法组合的频率,而不是通过乘法组合的频率。请参阅“科学家和工程师指南”的chapter 5 数字信号处理了解更多细节。

基于scipy.signal的代码将为您的代码提供类似的结果:

from pylab import *
import scipy.signal as signal

# create an array of 1024 points sampled at 40MHz
# [each sample is 25ns apart]
Fs = 40e6
nyq = Fs / 2
T  = 1/Fs
t  = np.arange(0,(1024*T),T)

# create an ip signal sampled at Fs, using two frequencies 
F_low  = 25e3 #  25kHz
F_high = 1e6  #  1MHz
ip_1 = np.sin(2*np.pi*F_low*t) + np.sin(2*np.pi*F_high*t)
ip_2 = np.sin(2*np.pi*F_low*t) * np.sin(2*np.pi*F_high*t)

Fc = 0.9e6
Length = 101

# create a low pass digital filter
a = signal.firwin(Length, cutoff = F_high / nyq, window="hann")

# create a high pass filter via signal inversion
a = -a
a[Length/2] = a[Length/2] + 1

figure()
plot(a, 'ro')

# apply the high pass filter to the two input signals
op_1 = signal.lfilter(a, 1, ip_1)
op_2 = signal.lfilter(a, 1, ip_2)

figure()
plot(ip_1)
figure()
plot(op_1)
figure()
plot(ip_2)
figure()
plot(op_2)

冲动响应:

Impulse Response

线性组合输入:

Linearly Combined Input

过滤后的输出:

Linearly Combined Output

非线性组合输入:

Non-linearly Combined Input

过滤后的输出:

Non-linearly Combined Output