我有一个数据框,例如:
from pandas import DataFrame
import pandas as pd
x = DataFrame.from_dict({'farm' : ['A','B','A','B'],
'fruit':['apple','apple','pear','pear']})
如何使用id复制N
次,例如。输出(N=2
):
farm fruit sim
0 A apple 0
1 B apple 0
2 A pear 0
3 B pear 0
0 A apple 1
1 B apple 1
2 A pear 1
3 B pear 1
我尝试了一种适用于R:
中的数据帧的方法from numpy import arange
N = 2
sim_ids = DataFrame(arange(N))
pd.merge(left=x, right=sim_ids, how='left')
但失败并显示错误MergeError: No common columns to perform merge on
。
感谢。
答案 0 :(得分:1)
不确定R在那里做什么,但这是一种做你想做的事情的方法:
In [150]: x
Out[150]:
farm fruit
0 A apple
1 B apple
2 A pear
3 B pear
[4 rows x 2 columns]
In [151]: N = 2
In [152]: DataFrame(tile(x, (N, 1)), columns=x.columns).join(DataFrame({'sims': repeat(arange(N), len(x))}))
Out[152]:
farm fruit sims
0 A apple 0
1 B apple 0
2 A pear 0
3 B pear 0
4 A apple 1
5 B apple 1
6 A pear 1
7 B pear 1
[8 rows x 3 columns]
In [153]: N = 3
In [154]: DataFrame(tile(x, (N, 1)), columns=x.columns).join(DataFrame({'sims': repeat(arange(N), len(x))}))
Out[154]:
farm fruit sims
0 A apple 0
1 B apple 0
2 A pear 0
3 B pear 0
4 A apple 1
5 B apple 1
6 A pear 1
7 B pear 1
8 A apple 2
9 B apple 2
10 A pear 2
11 B pear 2
[12 rows x 3 columns]
答案 1 :(得分:1)
我可能会这样做:
>>> df_new = pd.concat([df]*2)
>>> df_new["id"] = df_new.groupby(level=0).cumcount()
>>> df_new
farm fruit id
0 A apple 0
1 B apple 0
2 A pear 0
3 B pear 0
0 A apple 1
1 B apple 1
2 A pear 1
3 B pear 1
[8 rows x 3 columns]