256位AVX向量中32位浮点的水平和

时间:2014-04-21 01:25:13

标签: c++ vectorization sse simd avx

我有两个浮点阵列,我想用尽可能最低的延迟来计算使用SSE和AVX的点积。我知道浮点数有一个256位的点内积,但我已经读过SO,它比下面的技术慢:(https://stackoverflow.com/a/4121295/997112)。

我已完成大部分工作,向量temp_sums包含所有总和,我只需要将temp_sum中包含的所有八个32位总和加在一起。

#include "xmmintrin.h"
#include "immintrin.h"

int main(){
    const int num_elements_in_array = 16;
    __declspec(align(32)) float x[num_elements_in_array];
    __declspec(align(32)) float y[num_elements_in_array];

    x[0] = 2;   x[1] = 2;   x[2] = 2;   x[3] = 2;
    x[4] = 2;   x[5] = 2;   x[6] = 2;   x[7] = 2;
    x[8] = 2;   x[9] = 2;   x[10] = 2;  x[11] = 2;
    x[12] = 2;  x[13] = 2;  x[14] = 2;  x[15] = 2;

    y[0] = 3;   y[1] = 3;   y[2] = 3;   y[3] = 3;
    y[4] = 3;   y[5] = 3;   y[6] = 3;   y[7] = 3;
    y[8] = 3;   y[9] = 3;   y[10] = 3;  y[11] = 3;
    y[12] = 3;  y[13] = 3;  y[14] = 3;  y[15] = 3;

    __m256 a;
    __m256 b;
    __m256 temp_products;   
    __m256 temp_sum = _mm256_setzero_ps();

    unsigned short j = 0;
    const int sse_data_size = 32;
    int num_values_to_process = sse_data_size/sizeof(float);

    while(j < num_elements_in_array){
        a = _mm256_load_ps(x+j);
        b = _mm256_load_ps(y+j);

        temp_products = _mm256_mul_ps(b, a);
        temp_sum = _mm256_add_ps(temp_sum, temp_products);

        j = j + num_values_to_process;
    }

    //Need to "process" temp_sum as a final value here

}

我担心我需要的256位内在函数在AVX 1之前是不可用的。

2 个答案:

答案 0 :(得分:4)

我建议尽可能使用128位AVX指令。它将减少一个跨域shuffle的延迟(Intel Sandy / Ivy Bridge上的2个周期),并提高在128位执行单元(目前为AMD Bulldozer,Piledriver,Steamroller和Jaguar)上运行AVX指令的CPU的效率:< / p>

static inline float _mm256_reduce_add_ps(__m256 x) {
    /* ( x3+x7, x2+x6, x1+x5, x0+x4 ) */
    const __m128 x128 = _mm_add_ps(_mm256_extractf128_ps(x, 1), _mm256_castps256_ps128(x));
    /* ( -, -, x1+x3+x5+x7, x0+x2+x4+x6 ) */
    const __m128 x64 = _mm_add_ps(x128, _mm_movehl_ps(x128, x128));
    /* ( -, -, -, x0+x1+x2+x3+x4+x5+x6+x7 ) */
    const __m128 x32 = _mm_add_ss(x64, _mm_shuffle_ps(x64, x64, 0x55));
    /* Conversion to float is a no-op on x86-64 */
    return _mm_cvtss_f32(x32);
}

答案 1 :(得分:3)

您可以使用AVX模拟完整的水平添加(即_mm256_hadd_ps的正确256位版本),如下所示:

#define _mm256_full_hadd_ps(v0, v1) \
        _mm256_hadd_ps(_mm256_permute2f128_ps(v0, v1, 0x20), \
                       _mm256_permute2f128_ps(v0, v1, 0x31))

如果您只使用一个输入向量,那么您可以稍微简化一下。