我正在尝试做的是想出一种在图形上生成n个随机点的方法(显示它是没有必要的)。随机选择一个点并连接到最接近它的点(如果它已经连接到最佳选项,则连接到下一个点),使得没有两条线相交。重复此过程直到不再可能连接。顶点用于表示地图上的区域,连接表示邻接。到目前为止,我的以下代码如下所示,取自http://javaingrab.blogspot.com/2012/12/m-way-graph-coloring-with-backtracking.html:
public class MWayGrColor{
/*G is graph's adjacency matrix and x is solution vector */
private int G[][],x[],n,m,soln;
public void mColoring(int k){ //backtracking function
for(int i=1;i<=n;i++){
next_color(k); //coloring kth vertex
if(x[k]==0)
return; //if unsuccessful then backtrack
if(k==n) //if all colored then show
write();
else
mColoring(k+1); /* successful but still left to color */
}
}
private void next_color(int k){
do{
int i=1;
x[k]=(x[k]+1)%(m+1);
if(x[k]==0)
return;
for(i=1;i<=n;i++)
if(G[i][k]!=0 && x[k]==x[i]) /* checking adjacency and not same color */
break;
if(i==n+1) return; //new color found
}while(true);
}
private void write(){
System.out.print("\nColoring(V C) # "+(++soln)+"-->");
for(int i=1;i<=n;i++)
System.out.print("\t("+i+" "+x[i]+")"); //solution vector
}
public void input(){
java.util.Scanner sc=new java.util.Scanner(System.in);
System.out.print("Enter no. of vertices : ");
n=sc.nextInt();
G=new int[n+1][n+1];
x=new int[n+1];
System.out.print("Enter no. of colors : ");
m=sc.nextInt();
System.out.println("Enter adjacency matrix-->");
for(int i=1;i<=n;i++)
for(int j=1;j<=n;j++)
G[i][j]=sc.nextInt();
}
public static void main (String[] args) {
MWayGrColor obj=new MWayGrColor();
obj.input();
obj.mColoring(1);
if(obj.soln==0)
System.out.println("\nNeed more than "+obj.m+" colors");
else
System.out.print("\nTOTAL SOLN : "+obj.soln);
}
}
如上所述,地图不需要在视觉上表示,因为当前的显示方法是足够的。我知道Point2D.Double类和Line2D类,我原本只是开始生成点并使用这些行来创建代码中已经显示的邻接矩阵,但连接点和避免重复的方法是在如何实施它们方面让我非常困惑。我怎样才能完成这一代邻接矩阵?
答案 0 :(得分:0)
目前尚不清楚实际问题是什么。听起来“这太复杂了,我做不到”。但是,除非对方法及其运行时间等有严格的要求,否则可以务实地写下必须做的事情:
do
{
V v0 = randomVertex();
V v1 = findClosestUnconnected(v0);
if (line(v0,v1).intersectsNoOtherLine())
{
insert(line(v0,v1));
}
} while (insertedNewLine);
当然,这意味着一些搜索。对于大型图形,可能存在一些复杂的数据结构来加速这种情况。特别是可以使用像KD树等经典结构来加速对最近(未连接)邻居的搜索。但这似乎与原始问题无关。
通过提供允许更“自然”描述的方法的包装器,可以更方便地处理邻接矩阵:
class Graph
{
private final boolean matrix[][];
void addEdge(V v0, V v1)
{
matrix[v0.index][v1.index] = true;
matrix[v1.index][v0.index] = true;
}
boolean hasEdge(V v0, V v1)
{
return matrix[v0.index][v1.index];
}
}
但在这种情况下,这只是一种次要的语法简化。
一个例子,仅作为非常 q&amp; d sketch:
import java.awt.Color;
import java.awt.Graphics;
import java.awt.Graphics2D;
import java.awt.geom.Ellipse2D;
import java.awt.geom.Line2D;
import java.awt.geom.Point2D;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Random;
import javax.swing.JFrame;
import javax.swing.JPanel;
import javax.swing.SwingUtilities;
public class NonIntersectingAdjacencies
{
public static void main(String[] args)
{
Random random = new Random(0);
int numVertices = 25;
List<AdjacencyVertex> vertices =
createRandomVertices(numVertices, random);
final AdjacencyGraph adjacencyGraph =
new AdjacencyGraph(vertices);
boolean createdNewLine = true;
while (createdNewLine)
{
createdNewLine = false;
List<Integer> indices =
createShuffledList(numVertices, random);
for (int i=0; i<numVertices; i++)
{
int randomIndex = indices.get(i);
AdjacencyVertex randomVertex = vertices.get(randomIndex);
AdjacencyVertex closest =
findClosestUnconnected(randomVertex, adjacencyGraph);
if (closest != null)
{
if (!intersectsOtherLine(
randomVertex, closest, adjacencyGraph))
{
adjacencyGraph.addEdge(randomVertex, closest);
createdNewLine = true;
}
}
}
}
AdjacencyGraphPanel.show(adjacencyGraph);
}
private static List<AdjacencyVertex> createRandomVertices(
int numVertices, Random random)
{
List<AdjacencyVertex> vertices = new ArrayList<AdjacencyVertex>();
for (int i=0; i<numVertices; i++)
{
AdjacencyVertex v = new AdjacencyVertex();
v.index = i;
v.x = random.nextDouble();
v.y = random.nextDouble();
vertices.add(v);
}
return vertices;
}
private static List<Integer> createShuffledList(
int maxValue, Random random)
{
List<Integer> list = new ArrayList<Integer>();
for (int i=0; i<maxValue; i++)
{
list.add(i);
}
Collections.shuffle(list, random);
return list;
}
private static boolean intersectsOtherLine(
AdjacencyVertex v0, AdjacencyVertex v1,
AdjacencyGraph adjacencyGraph)
{
Line2D newLine = new Line2D.Double(
v0.x, v0.y, v1.x, v1.y);
List<AdjacencyVertex> vertices = adjacencyGraph.getVertices();
for (int i=0; i<vertices.size(); i++)
{
for (int j=0; j<vertices.size(); j++)
{
if (i == j)
{
continue;
}
AdjacencyVertex oldV0 = vertices.get(i);
AdjacencyVertex oldV1 = vertices.get(j);
if (adjacencyGraph.hasEdge(oldV0, oldV1))
{
Line2D oldLine = new Line2D.Double(
oldV0.x, oldV0.y, oldV1.x, oldV1.y);
if (Intersection.intersect(oldLine, newLine))
{
return true;
}
}
}
}
return false;
}
private static AdjacencyVertex findClosestUnconnected(
AdjacencyVertex v,
AdjacencyGraph adjacencyGraph)
{
double minDistanceSquared = Double.MAX_VALUE;
AdjacencyVertex closest = null;
List<AdjacencyVertex> vertices = adjacencyGraph.getVertices();
for (int i=0; i<vertices.size(); i++)
{
AdjacencyVertex other = vertices.get(i);
if (other.index == v.index)
{
continue;
}
if (adjacencyGraph.hasEdge(v, other))
{
continue;
}
double dx = other.x - v.x;
double dy = other.y - v.y;
double distanceSquared = Math.hypot(dx, dy);
if (distanceSquared < minDistanceSquared)
{
minDistanceSquared = distanceSquared;
closest = other;
}
}
return closest;
}
}
class AdjacencyVertex
{
double x;
double y;
int index;
}
class AdjacencyGraph
{
private final boolean matrix[][];
private final List<AdjacencyVertex> vertices;
AdjacencyGraph(List<AdjacencyVertex> vertices)
{
this.vertices = vertices;
this.matrix = new boolean[vertices.size()][vertices.size()];
}
List<AdjacencyVertex> getVertices()
{
return vertices;
}
void addEdge(AdjacencyVertex v0, AdjacencyVertex v1)
{
matrix[v0.index][v1.index] = true;
matrix[v1.index][v0.index] = true;
}
boolean hasEdge(AdjacencyVertex v0, AdjacencyVertex v1)
{
return matrix[v0.index][v1.index];
}
}
//============================================================================
// Only helper stuff below this line...
class AdjacencyGraphPanel extends JPanel
{
public static void show(final AdjacencyGraph adjacencyGraph)
{
SwingUtilities.invokeLater(new Runnable()
{
@Override
public void run()
{
createAndShowGUI(adjacencyGraph);
}
});
}
private static void createAndShowGUI(AdjacencyGraph adjacencyGraph)
{
JFrame f = new JFrame();
f.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
f.getContentPane().add(new AdjacencyGraphPanel(adjacencyGraph));
f.setSize(600,600);
f.setLocationRelativeTo(null);
f.setVisible(true);
}
private final AdjacencyGraph adjacencyGraph;
public AdjacencyGraphPanel(AdjacencyGraph adjacencyGraph)
{
this.adjacencyGraph = adjacencyGraph;
}
@Override
protected void paintComponent(Graphics gr)
{
super.paintComponent(gr);
Graphics2D g = (Graphics2D)gr;
int offsetX = 30;
int offsetY = 30;
int w = getWidth() - offsetX - offsetX;
int h = getHeight() - offsetY - offsetY;
g.setColor(Color.BLACK);
List<AdjacencyVertex> vertices = adjacencyGraph.getVertices();
for (int i=0; i<vertices.size(); i++)
{
for (int j=0; j<vertices.size(); j++)
{
if (i == j)
{
continue;
}
AdjacencyVertex v0 = vertices.get(i);
AdjacencyVertex v1 = vertices.get(j);
if (adjacencyGraph.hasEdge(v0, v1))
{
Line2D newLine = new Line2D.Double(
offsetX + v0.x*w,
offsetY + v0.y*h,
offsetX + v1.x*w,
offsetY + v1.y*h);
g.draw(newLine);
}
}
}
g.setColor(Color.BLUE);
for (int i=0; i<vertices.size(); i++)
{
AdjacencyVertex v = vertices.get(i);
int ix = (int)(offsetX + v.x * w);
int iy = (int)(offsetY + v.y * h);
g.fill(new Ellipse2D.Double(
ix - 5, iy - 5, 10, 10));
g.drawString(String.valueOf(i), ix, iy+16);
}
}
}
class Intersection
{
static boolean intersect(Line2D line0, Line2D line1)
{
Point2D location = new Point2D.Double();
Point2D intersection =
Intersection.computeIntersectionSegmentSegment(
line0, line1, location);
if (intersection == null)
{
return false;
}
return !isAtLineAnd(location);
}
private static boolean isAtLineAnd(Point2D location)
{
double EPSILON = 0.05;
if (Math.abs(location.getX()) < EPSILON)
{
return true;
}
if (Math.abs(location.getX()-1) < EPSILON)
{
return true;
}
if (Math.abs(location.getY()) < EPSILON)
{
return true;
}
if (Math.abs(location.getY()-1) < EPSILON)
{
return true;
}
return false;
}
/**
* Epsilon for floating point computations
*/
private static final double epsilon = 1e-6f;
/**
* Computes the intersection of the specified line segments and returns
* the intersection point, or <code>null</code> if the line segments do
* not intersect.
*
* @param line0 The first line segment
* @param line1 The second line segment
* @param location Optional location that stores the
* relative location of the intersection point on
* the given line segments
* @return The intersection point, or <code>null</code> if
* there is no intersection.
*/
public static Point2D computeIntersectionSegmentSegment(
Line2D line0, Line2D line1, Point2D location)
{
return computeIntersectionSegmentSegment(
line0.getX1(), line0.getY1(), line0.getX2(), line0.getY2(),
line1.getX1(), line1.getY1(), line1.getX2(), line1.getY2(),
location);
}
/**
* Computes the intersection of the specified line segments and returns
* the intersection point, or <code>null</code> if the line segments do
* not intersect.
*
* @param s0x0 x-coordinate of point 0 of line segment 0
* @param s0y0 y-coordinate of point 0 of line segment 0
* @param s0x1 x-coordinate of point 1 of line segment 0
* @param s0y1 y-coordinate of point 1 of line segment 0
* @param s1x0 x-coordinate of point 0 of line segment 1
* @param s1y0 y-coordinate of point 0 of line segment 1
* @param s1x1 x-coordinate of point 1 of line segment 1
* @param s1y1 y-coordinate of point 1 of line segment 1
* @param location Optional location that stores the
* relative location of the intersection point on
* the given line segments
* @return The intersection point, or <code>null</code> if
* there is no intersection.
*/
public static Point2D computeIntersectionSegmentSegment(
double s0x0, double s0y0,
double s0x1, double s0y1,
double s1x0, double s1y0,
double s1x1, double s1y1,
Point2D location)
{
if (location == null)
{
location = new Point2D.Double();
}
Point2D result = computeIntersectionLineLine(
s0x0, s0y0, s0x1, s0y1, s1x0, s1y0, s1x1, s1y1, location);
if (location.getX() >= 0 && location.getX() <= 1.0 &&
location.getY() >= 0 && location.getY() <= 1.0)
{
return result;
}
return null;
}
/**
* Computes the intersection of the specified lines and returns the
* intersection point, or <code>null</code> if the lines do not
* intersect.
*
* Ported from
* http://www.geometrictools.com/LibMathematics/Intersection/
* Wm5IntrSegment2Segment2.cpp
*
* @param s0x0 x-coordinate of point 0 of line segment 0
* @param s0y0 y-coordinate of point 0 of line segment 0
* @param s0x1 x-coordinate of point 1 of line segment 0
* @param s0y1 y-coordinate of point 1 of line segment 0
* @param s1x0 x-coordinate of point 0 of line segment 1
* @param s1y0 y-coordinate of point 0 of line segment 1
* @param s1x1 x-coordinate of point 1 of line segment 1
* @param s1y1 y-coordinate of point 1 of line segment 1
* @param location Optional location that stores the
* relative location of the intersection point on
* the given line segments
* @return The intersection point, or <code>null</code> if
* there is no intersection.
*/
public static Point2D computeIntersectionLineLine(
double s0x0, double s0y0,
double s0x1, double s0y1,
double s1x0, double s1y0,
double s1x1, double s1y1,
Point2D location)
{
double dx0 = s0x1 - s0x0;
double dy0 = s0y1 - s0y0;
double dx1 = s1x1 - s1x0;
double dy1 = s1y1 - s1y0;
double len0 = Math.sqrt(dx0*dx0+dy0*dy0);
double len1 = Math.sqrt(dx1*dx1+dy1*dy1);
double dir0x = dx0 / len0;
double dir0y = dy0 / len0;
double dir1x = dx1 / len1;
double dir1y = dy1 / len1;
double c0x = s0x0 + dx0 * 0.5;
double c0y = s0y0 + dy0 * 0.5;
double c1x = s1x0 + dx1 * 0.5;
double c1y = s1y0 + dy1 * 0.5;
double cdx = c1x - c0x;
double cdy = c1y - c0y;
double dot = dotPerp(dir0x, dir0y, dir1x, dir1y);
if (Math.abs(dot) > epsilon)
{
double dot0 = dotPerp(cdx, cdy, dir0x, dir0y);
double dot1 = dotPerp(cdx, cdy, dir1x, dir1y);
double invDot = 1.0/dot;
double s0 = dot1*invDot;
double s1 = dot0*invDot;
if (location != null)
{
double n0 = (s0 / len0) + 0.5;
double n1 = (s1 / len1) + 0.5;
location.setLocation(n0, n1);
}
double x = c0x + s0 * dir0x;
double y = c0y + s0 * dir0y;
return new Point2D.Double(x,y);
}
return null;
}
/**
* Returns the perpendicular dot product, i.e. the length
* of the vector (x0,y0,0)x(x1,y1,0).
*
* @param x0 Coordinate x0
* @param y0 Coordinate y0
* @param x1 Coordinate x1
* @param y1 Coordinate y1
* @return The length of the cross product vector
*/
private static double dotPerp(double x0, double y0, double x1, double y1)
{
return x0*y1 - y0*x1;
}
}