我的这张图片的框中包含字母,如下所示:
我已经能够裁掉每个盒子了,像这样:
现在回答我的问题。我怎样才能从每个盒子中裁剪掉字母?期望的结果如下所示
我想使用findContours,但我不确定如何实现这一点,因为它会检测噪音和周围的一切。
答案 0 :(得分:14)
<强>方法强> 我根据这个事实建议你采用以下方法,你可以提取盒子。如果你按照步骤给出方框,我认为这样可行:
注意:有一个名为pad
的var控制结果数字的填充!
为你的所有盒子做这个。我希望这会有所帮助!
祝你好运:)
Python代码
# reading image in grayscale
image = cv2.imread('testing2.jpg',cv2.CV_LOAD_IMAGE_GRAYSCALE)
# thresholding to get a binary one
ret, image = cv2.threshold(image, 100,255,cv2.THRESH_BINARY_INV)
# finding the center of image
image_center = (image.shape[0]/2, image.shape[1]/2)
if image is None:
print 'can not read the image data'
# finding image contours
contours, hier = cv2.findContours(image, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
# finding distance of each contour from the center of image
d_min = 1000
for contour in contours:
# finding bounding rect
rect = cv2.boundingRect(contour)
# skipping the outliers
if rect[3] > image.shape[1]/2 and rect[2] > image.shape[0]/2:
continue
pt1 = (rect[0], rect[1])
# finding the center of bounding rect-digit
c = (rect[0]+rect[2]*1/2, rect[1]+rect[3]*1/2)
d = np.sqrt((c[0] - image_center[0])**2 + (c[1]-image_center[1])**2)
# finding the minimum distance from the center
if d < d_min:
d_min = d
rect_min = [pt1, (rect[2],rect[3])]
# fetching the image with desired padding
pad = 5
result = image[rect_min[0][1]-pad:rect_min[0][1]+rect_min[1][1]+pad, rect_min[0][0]-pad:rect_min[0][0]+rect_min[1][0]+pad]
plt.imshow(result*255, 'gray')
plt.show()
Java代码
System.loadLibrary(Core.NATIVE_LIBRARY_NAME);
// reading image
Mat image = Highgui.imread(".\\testing2.jpg", Highgui.CV_LOAD_IMAGE_GRAYSCALE);
// clone the image
Mat original = image.clone();
// thresholding the image to make a binary image
Imgproc.threshold(image, image, 100, 128, Imgproc.THRESH_BINARY_INV);
// find the center of the image
double[] centers = {(double)image.width()/2, (double)image.height()/2};
Point image_center = new Point(centers);
// finding the contours
ArrayList<MatOfPoint> contours = new ArrayList<MatOfPoint>();
Mat hierarchy = new Mat();
Imgproc.findContours(image, contours, hierarchy, Imgproc.RETR_EXTERNAL, Imgproc.CHAIN_APPROX_SIMPLE);
// finding best bounding rectangle for a contour whose distance is closer to the image center that other ones
double d_min = Double.MAX_VALUE;
Rect rect_min = new Rect();
for (MatOfPoint contour : contours) {
Rect rec = Imgproc.boundingRect(contour);
// find the best candidates
if (rec.height > image.height()/2 & rec.width > image.width()/2)
continue;
Point pt1 = new Point((double)rec.x, (double)rec.y);
Point center = new Point(rec.x+(double)(rec.width)/2, rec.y + (double)(rec.height)/2);
double d = Math.sqrt(Math.pow((double)(pt1.x-image_center.x),2) + Math.pow((double)(pt1.y -image_center.y), 2));
if (d < d_min)
{
d_min = d;
rect_min = rec;
}
}
// slicing the image for result region
int pad = 5;
rect_min.x = rect_min.x - pad;
rect_min.y = rect_min.y - pad;
rect_min.width = rect_min.width + 2*pad;
rect_min.height = rect_min.height + 2*pad;
Mat result = original.submat(rect_min);
Highgui.imwrite("result.png", result);
修改强> 添加了Java代码!
<强>结果强>