我们有两个名单,A和B:
A = ['a','b','c']
B = [1, 2]
是否有一种pythonic方法来构建包含2 ^ n的A和B之间的所有映射集(此处为2 ^ 3 = 8)?那就是:
[(a,1), (b,1), (c,1)]
[(a,1), (b,1), (c,2)]
[(a,1), (b,2), (c,1)]
[(a,1), (b,2), (c,2)]
[(a,2), (b,1), (c,1)]
[(a,2), (b,1), (c,2)]
[(a,2), (b,2), (c,1)]
[(a,2), (b,2), (c,2)]
使用itertools.product
,可以获得所有元组:
import itertools as it
P = it.product(A, B)
[p for p in P]
给出了:
Out[3]: [('a', 1), ('a', 2), ('b', 1), ('b', 2), ('c', 1), ('c', 2)]
答案 0 :(得分:24)
您可以使用itertools.product
和zip
from itertools import product
print [zip(A, item) for item in product(B, repeat=len(A))]
<强>输出强>
[[('a', 1), ('b', 1), ('c', 1)],
[('a', 1), ('b', 1), ('c', 2)],
[('a', 1), ('b', 2), ('c', 1)],
[('a', 1), ('b', 2), ('c', 2)],
[('a', 2), ('b', 1), ('c', 1)],
[('a', 2), ('b', 1), ('c', 2)],
[('a', 2), ('b', 2), ('c', 1)],
[('a', 2), ('b', 2), ('c', 2)]]
product(B, repeat=len(A))
生成
[(1, 1, 1),
(1, 1, 2),
(1, 2, 1),
(1, 2, 2),
(2, 1, 1),
(2, 1, 2),
(2, 2, 1),
(2, 2, 2)]
然后我们从产品中挑选每个元素并用A
压缩它,以获得所需的输出。
答案 1 :(得分:11)
import itertools as it
A = ['a','b','c']
B = [1, 2]
for i in it.product(*([B]*len(A))):
print(list(zip(A, i)))
输出:
[('a', 1), ('b', 1), ('c', 1)]
[('a', 1), ('b', 1), ('c', 2)]
[('a', 1), ('b', 2), ('c', 1)]
[('a', 1), ('b', 2), ('c', 2)]
[('a', 2), ('b', 1), ('c', 1)]
[('a', 2), ('b', 1), ('c', 2)]
[('a', 2), ('b', 2), ('c', 1)]
[('a', 2), ('b', 2), ('c', 2)]
不确定它是否非常pythonic,如果你看it.product(*([B]*len(A)))
,因为它使用了多个特定于python的语言功能。但它实际上太神秘了,不能成为pythonic ...... B根据A的长度重复n次并解压缩到产品函数。