我有一个访问数据库和下载图像的程序。我为此目的使用BlockingCollection
。但是,要访问某些UI元素,我决定使用Backgroundworker
和BlockingCollection
的组合。与仅使用Blockingcollection
时的速度相比,它大大降低了处理速度。可能是什么原因?或者,因为我现在正在访问UI元素,速度会降低吗?
以下是我正在处理的代码:
private void button_Start_Click(object sender, System.EventArgs e)
{
BackgroundWorker bgWorker = new BackgroundWorker();
bgWorker.DoWork += bw_DoWork;
bgWorker.RunWorkerCompleted += bw_RunWorkerCompleted;
bgWorker.ProgressChanged += bw_ProgressChanged;
bgWorker.WorkerSupportsCancellation = true;
bgWorker.WorkerReportsProgress = true;
Button btnSender = (Button)sender;
btnSender.Enabled = false;
bgWorker.RunWorkerAsync();
}
和Do_Work()
如下:
{
HttpWebRequest request = null;
using (BlockingCollection<ImageFileName> bc = new BlockingCollection<ImageFileName>(30))
{
using (Task task1 = Task.Factory.StartNew(() =>
{
foreach (var fileName in fileNames)
{
string baseUrl = "http://some url";
string url = string.Format(baseUrl, fileName);
request = (HttpWebRequest)WebRequest.Create(url);
request.Method = "GET";
request.ContentType = "application/x-www-form-urlencoded";
var response = (HttpWebResponse)request.GetResponse();
Stream stream = response.GetResponseStream();
img = Image.FromStream(stream);
FileNameImage = new ImageFileName(fileName.ToString(), img);
bc.Add(FileNameImage);
Thread.Sleep(100);
Console.WriteLine("Size of BlockingCollection: {0}", bc.Count);
}
}))
{
using (Task task2 = Task.Factory.StartNew(() =>
{
foreach (ImageFileName imgfilename2 in bc.GetConsumingEnumerable())
{
if (bw.CancellationPending == true)
{
e.Cancel = true;
break;
}
else
{
int numIterations = 4;
Image img2 = imgfilename2.Image;
for (int i = 0; i < numIterations; i++)
{
img2.Save("C:\\path" + imgfilename2.ImageName);
ZoomThumbnail = img2;
ZoomSmall = img2;
ZoomLarge = img2;
ZoomThumbnail = GenerateThumbnail(ZoomThumbnail, 86, false);
ZoomThumbnail.Save("C:\\path" + imgfilename2.ImageName + "_Thumb.jpg");
ZoomThumbnail.Dispose();
ZoomSmall = GenerateThumbnail(ZoomSmall, 400, false);
ZoomSmall.Save("C:\\path" + imgfilename2.ImageName + "_Small.jpg");
ZoomSmall.Dispose();
ZoomLarge = GenerateThumbnail(ZoomLarge, 1200, false);
ZoomLarge.Save("C:\\path" + imgfilename2.ImageName + "_Large.jpg");
ZoomLarge.Dispose();
// progressBar1.BeginInvoke(ProgressBarChange);
int percentComplete = (int)(((i + 1.0) / (double)numIterations) * 100.0);
//if (progressBar1.InvokeRequired)
//{
// BeginInvoke(new MethodInvoker(delegate{bw.ReportProgress(percentComplete)};))
//}
}
Console.WriteLine("This is Take part and size is: {0}", bc.Count);
}
}
}))
Task.WaitAll(task1, task2);
}
}
}
答案 0 :(得分:1)
更好的选择可能是检索数据并将其写入磁盘同步运行,而是使用Parallel.ForEach()
允许多个请求同时在飞行中。这应该可以减少几个地方的等待量:
所以也许更像这样的东西:
Parallel.ForEach(fileNames,
(name) =>
{
string baseUrl = "http://some url";
string url = string.Format(baseUrl, fileName);
var request = (HttpWebRequest)WebRequest.Create(url);
request.Method = "GET";
request.ContentType = "application/x-www-form-urlencoded";
var response = (HttpWebResponse)request.GetResponse();
Stream stream = response.GetResponseStream();
var img = Image.FromStream(stream);
// Cutting out a lot of steps from the 2nd Task to simplify the example
img.Save(Path.Combine("C:\\path", fileName.ToString()));
});
使用这种方法可能遇到的一个问题是,它会立即开始生成太多请求。这可能会导致资源争用问题,或者网络服务器可能会将其解释为恶意行为并停止响应您。您可以通过设置MaxDegreeOfParallelism
来限制同时发生的请求数。以下示例显示了如何限制操作同时处理不超过4个文件。
var options = new ParallelOptions { MaxDegreeOfParallelism = 4 };
Parallel.ForEach(fileNames, (name) => { /* do stuff */ }, options);