我正在使用ggpairs
绘制散点图矩阵。我使用以下代码:
# Load required packages
require(GGally)
# Load datasets
data(state)
df <- data.frame(state.x77,
State = state.name,
Abbrev = state.abb,
Region = state.region,
Division = state.division
)
# Create scatterplot matrix
p <- ggpairs(df,
# Columns to include in the matrix
columns = c(3,5,6,7),
# What to include above diagonal
# list(continuous = "points") to mirror
# "blank" to turn off
upper = "blank",
legends=T,
# What to include below diagonal
lower = list(continuous = "points"),
# What to include in the diagonal
diag = list(continuous = "density"),
# How to label inner plots
# internal, none, show
axisLabels = "none",
# Other aes() parameters
colour = "Region",
title = "State Scatterplot Matrix"
)
# Show the plot
print(p)
我得到以下情节:
现在,人们可以很容易地看到我正在为矩阵中的每个情节获得传说。我希望整个情节只有一个普遍的传奇。我怎么做? 任何帮助将不胜感激。
答案 0 :(得分:11)
我正在研究类似的事情,这是我会采取的方法,
ggpairs
函数调用现在迭代绘图矩阵中的子图并删除每个图的图例,并保留其中一个,因为密度都绘制在同一列上。
colIdx <- c(3,5,6,7)
for (i in 1:length(colIdx)) {
# Address only the diagonal elements
# Get plot out of matrix
inner <- getPlot(p, i, i);
# Add any ggplot2 settings you want (blank grid here)
inner <- inner + theme(panel.grid = element_blank()) +
theme(axis.text.x = element_blank())
# Put it back into the matrix
p <- putPlot(p, inner, i, i)
for (j in 1:length(colIdx)){
if((i==1 & j==1)){
# Move legend right
inner <- getPlot(p, i, j)
inner <- inner + theme(legend.position=c(length(colIdx)-0.25,0.50))
p <- putPlot(p, inner, i, j)
}
else{
# Delete legend
inner <- getPlot(p, i, j)
inner <- inner + theme(legend.position="none")
p <- putPlot(p, inner, i, j)
}
}
}
答案 1 :(得分:7)
希望有人能说明ggpairs(...)
如何做到这一点。我想亲眼看看。在此之前,这是一个不使用ggpairs(...)
的解决方案,而是使用facet的普通香草ggplot
。
library(ggplot2)
library(reshape2) # for melt(...)
library(plyr) # for .(...)
library(data.table)
xx <- with(df, data.table(id=1:nrow(df), group=Region, df[,c(3,5,6,7)]))
yy <- melt(xx,id=1:2, variable.name="H", value.name="xval")
setkey(yy,id,group)
ww <- yy[,list(V=H,yval=xval),key="id,group"]
zz <- yy[ww,allow.cartesian=T]
setkey(zz,H,V,group)
zz <- zz[,list(id, group, xval, yval, min.x=min(xval),min.y=min(yval),
range.x=diff(range(xval)),range.y=diff(range(yval))),by="H,V"]
d <- zz[H==V,list(x=density(xval)$x,
y=min.y+range.y*density(xval)$y/max(density(xval)$y)),
by="H,V,group"]
ggplot(zz)+
geom_point(subset= .(xtfrm(H)<xtfrm(V)),
aes(x=xval, y=yval, color=factor(group)),
size=3, alpha=0.5)+
geom_line(subset= .(H==V), data=d, aes(x=x, y=y, color=factor(group)))+
facet_grid(V~H, scales="free")+
scale_color_discrete(name="Region")+
labs(x="", y="")
基本想法是melt(...)
df
ggplot
xx
yy
的正确格式,制作两份副本(ww
和{{1} }}并运行基于id
和group
的笛卡尔联接(此处,id
只是一个行号,group
是Region
变量),创建zz
。我们需要在外部计算和缩放密度(在数据表d
中)。尽管如此,它仍然比ggpairs(...)
跑得快。