我想获得直方图bin中包含的数据列表。我正在使用numpy和Matplotlib。我知道如何遍历数据并检查bin边缘。但是,我想对2D直方图这样做,而执行此操作的代码相当丑陋。 numpy有没有任何结构可以让这更容易?
对于1D情况,我可以使用searchsorted()。但逻辑并没有那么好,我真的不想在没有必要时对每个数据点进行二进制搜索。
大多数令人讨厌的逻辑都是由于bin边界区域造成的。所有区域都有这样的边界:[左边缘,右边缘]。除了最后一个bin,它有一个像这样的区域:[left edge,right edge]。
以下是1D案例的一些示例代码:
import numpy as np
data = [0, 0.5, 1.5, 1.5, 1.5, 2.5, 2.5, 2.5, 3]
hist, edges = np.histogram(data, bins=3)
print 'data =', data
print 'histogram =', hist
print 'edges =', edges
getbin = 2 #0, 1, or 2
print '---'
print 'alg 1:'
#for i in range(len(data)):
for d in data:
if d >= edges[getbin]:
if (getbin == len(edges)-2) or d < edges[getbin+1]:
print 'found:', d
#end if
#end if
#end for
print '---'
print 'alg 2:'
for d in data:
val = np.searchsorted(edges, d, side='right')-1
if val == getbin or val == len(edges)-1:
print 'found:', d
#end if
#end for
以下是2D案例的一些示例代码:
import numpy as np
xdata = [0, 1.5, 1.5, 2.5, 2.5, 2.5, \
0.5, 0.5, 0.5, 0.5, 1.5, 1.5, 1.5, 1.5, 1.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, \
0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 0.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 1.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 2.5, 3]
ydata = [0, 5,5, 5, 5, 5, \
15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, 15, \
25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 25, 30]
xbins = 3
ybins = 3
hist2d, xedges, yedges = np.histogram2d(xdata, ydata, bins=(xbins, ybins))
print 'data2d =', zip(xdata, ydata)
print 'hist2d ='
print hist2d
print 'xedges =', xedges
print 'yedges =', yedges
getbin2d = 5 #0 through 8
print 'find data in bin #', getbin2d
xedge_i = getbin2d % xbins
yedge_i = int(getbin2d / xbins) #IMPORTANT: this is xbins
for x, y in zip(xdata, ydata):
# x and y left edges
if x >= xedges[xedge_i] and y >= yedges[yedge_i]:
#x right edge
if xedge_i == xbins-1 or x < xedges[xedge_i + 1]:
#y right edge
if yedge_i == ybins-1 or y < yedges[yedge_i + 1]:
print 'found:', x, y
#end if
#end if
#end if
#end for
有更干净/更有效的方法吗?似乎numpy会有这样的东西。
答案 0 :(得分:24)
digitize
将为您提供直方图中每个值所属的bin的索引:
import numpy as NP
A = NP.random.randint(0, 10, 100)
bins = NP.array([0., 20., 40., 60., 80., 100.])
# d is an index array holding the bin id for each point in A
d = NP.digitize(A, bins)
答案 1 :(得分:4)
如下:
In [1]: data = numpy.array([0, 0.5, 1.5, 1.5, 1.5, 2.5, 2.5, 2.5, 3])
In [2]: hist, edges = numpy.histogram(data, bins=3)
In [3]: for l, r in zip(edges[:-1], edges[1:]):
print(data[(data > l) & (data < r)])
....:
....:
[ 0.5]
[ 1.5 1.5 1.5]
[ 2.5 2.5 2.5]
In [4]:
使用一些代码来处理边缘情况。
答案 2 :(得分:0)
pyplot.hist会创建一个直方图(但也会将其绘制到您可能不需要的屏幕上)。对于垃圾箱,您可以使用numpy.histogram,如另一个答案中所述。
Here是一个比较pyploy.hist和numpy.histogram的例子。