我是networkx的新手,实际上对如何有效地找到节点的n度邻域有点困惑。节点v_i的n度邻域是与v_i完全相距n跳的节点集。给定指定的n,我需要找到图/网络中每个节点的n度邻域。
假设我有以下图表,我想找到节点v1的n = 1邻域。那将是v2和v3。接下来假设我想找到节点v1的n = 2邻域,那么那将是v4。
答案 0 :(得分:7)
import networkx as nx
G = nx.Graph()
G.add_edges_from([('v1','v2'),('v2','v4'),('v1','v3')])
def neighborhood(G, node, n):
path_lengths = nx.single_source_dijkstra_path_length(G, node)
return [node for node, length in path_lengths.iteritems()
if length == n]
print(neighborhood(G, 'v1', 1))
# ['v2', 'v3']
print(neighborhood(G, 'v1', 2))
# ['v4']
答案 1 :(得分:1)
查找给定节点的n个邻居的最有效方法是使用深度优先搜索: http://en.wikipedia.org/wiki/Depth-first_search。以下函数返回所有距离的起始邻居。但是,如果需要为所有节点找到n个邻居,则对所有节点使用此函数将不是最有效的解决方案。相反,可以将此函数仅用于每个连接组件中的起始节点,并计算相对于起点的其他节点的n个邻居,但这将更加复杂。
import networkx as nx
def n_neighbor(G, start):
# {distance : [list of nodes at that distance]}
distance_nodes = {}
# nodes at distance 1 from the currently visited ones
next_shell = G.neighbors(start)
# set of all visited nodes
visited=set()
visited.add(start)
# how fare we are from start
distance = 0
# until we run out of nodes
while len(next_shell) > 0:
# this will be the next shell
shell_after_this = []
# update distance
distance += 1
distance_nodes[distance] = []
# update visited and distance_nodes
for node in next_shell:
visited.add(node)
distance_nodes[distance].append(node)
# compute shell_after_this
for node in next_shell:
# add neighbors to shell_after_this
# if they have not been visited already
for neighbor in G.neighbors(node):
if neighbor not in visited:
shell_after_this.append(neighbor)
# we repeat with the new_shell
next_shell = set(shell_after_this)
return distance_nodes
# example
G=nx.Graph()
G.add_edge(1,2)
G.add_edge(1,3)
G.add_edge(2,3)
G.add_edge(2,4)
G.add_edge(3,5)
G.add_edge(5,17)
G.add_edge(2,6)
print n_neighbor(G, 1)
答案 2 :(得分:1)
nx.descendants_at_distance()
可以解决问题(虽然是为有向图设计的):
G = nx.Graph()
G.add_edges_from([('v1', 'v2'), ('v2', 'v4'), ('v2', 'v4'), ('v1', 'v3')])
nx.descendants_at_distance(G, 'v1', distance=2) # returns {'v4'}
This is basically BFS, except that the queue only stores the nodes at `current_distance` from source at each iteration.
答案 3 :(得分:0)
当您在图表上执行广度优先搜索时,从根节点r开始 - 认为节点距离r的距离越来越远。
因此,您只需在执行BFS时跟踪节点级别,请参阅http://en.wikipedia.org/wiki/Level_structure以进行更全面的讨论。
答案 4 :(得分:0)
使用Adj矩阵查找n跳邻居
import networkx as nx
G = nx.Graph()
G.add_edges_from([('v1','v2'),('v2','v4'),('v1','v3')])
def n_neighbor(G, id, n_hop):
node = [id]
node_visited = set()
neighbors= []
while n_hop !=0:
neighbors= []
for node_id in node:
node_visited.add(node_id)
neighbors += [id for id in G.neighbors(node_id) if id not in node_visited]
node = neighbors
n_hop -=1
if len(node) == 0 :
return neighbors
return neighbors
print(n_neighbor(G, 'v2', 1))
功能
:返回:
输出:
print(n_neighbor(G,'v2',1))
['v1','v4']