我希望通过由n个节点组成的图G。并且对于每个第n个节点打开其邻居的字典。找出哪个邻居具有最大的数字属性。可能至少有100个邻居。并返回每个节点及其最大邻居的列表,即
[node,biggestneighbor]
[node,biggestneighbor]
[node,biggestneighbor]
节点的属性数据如下所示:
G.node[0]
{'type': 'a', 'pos': [0.76, 0.11]}
我感兴趣的属性是
G.node[0]['pos'][0]
0.76
有谁知道这是否存在?或者如果不是,启动逻辑看起来像一个好的起点?还是一个聪明的人有更好的主意?
def thebiggestneighbor(G,attribute,nodes=None):
if nodes is None:
node_set = G
else:
node_set = G.subgraph(nodes)
node=G.node
for u,nbrsdict in G.adjacency_iter():
if u not in node_set:
continue
for v,eattr in nbrsdict.items():
vattr=node[v].get(attribute,None)
# then something like this but for many nodes. probably better subtraction
# of all nodes from each other and which one yeilds the biggest numner
#
# if x.[vattra] > x.[vattrb] then
# a
# elif x.[vattra] < x.[vattrb] then
# b
yield (u,b)
答案 0 :(得分:2)
我喜欢用正确的数据结构来解决这样的问题:
#nodes = [ (att_n, [(att_n, n_idx).. ] ), ... ] where each node is known by its index
#in the outer list. Each node is represented with a tuple: att_n the numeric attribute,
#and a list of neighbors. Neighbors have their numeric attribute repeated
#eg. node 1 has neighbors 2, and 3. node 2 has neighbor 1 and 4, etc..:
nodes = [ (192, [ (102, 2), (555, 3)] ),
(102, [ (192, 1), (333, 4) ] ),
(555, [ (192, 1),] ), ...
]
#then to augment nodes so the big neighbor is visible:
nodesandbigneighbor=[ (att_n, neighbors, max(neighbors)) for att_n, neighbors in nodes]
此外,如果您将邻居列表的排序顺序从低数字属性维护为高,那么您可以执行以下操作:
nodesandbigneighbor=[ (att_n, neighbors, neighbors[-1]) for att_n, neighbors in nodes]
会更快(以节点插入时间为代价),但是你在插入时有效地解决了这个问题。
答案 1 :(得分:0)
我真的没有看到问题,你会通过遍历所有节点并且foreach节点迭代它的邻居来做O(n * m)[n =节点,m = avg(邻居)]操作。最坏的情况是O(n ^ 2)。你也有一个缩进问题,因为你的大多数代码都在“continue”语句之后,所以它不会被执行。
代码示例
node=G.node
output=[]
for u,nbrsdict in G.adjacency_iter():
if u not in node_set:
continue
max={'value':0,'node':None}
for v,eattr in nbrsdict.items():
vattr=node[v].get(attribute,None)
if vattr>max['value']:
max={'value':vattr,'node':node}
output.append((node,max['node']))
return output