让我们把鸭子留在池塘里。
为了说清楚,我正在使用Python 2.7.3。
我正在玩数字检查,并发现了一些我发现奇怪的事情:
In [1]: numbers.Number.mro()
Out[1]: [numbers.Number, object]
In [2]: numbers.Complex.mro()
Out[2]: [numbers.Complex, numbers.Number, object]
In [3]: numbers.Real.mro()
Out[3]: [numbers.Real, numbers.Complex, numbers.Number, object]
In [4]: numbers.Rational.mro()
Out[4]: [numbers.Rational, numbers.Real, numbers.Complex,
numbers.Number, object]
In [5]: numbers.Integral.mro()
Out[5]: [numbers.Integral, numbers.Rational, numbers.Real,
numbers.Complex, numbers.Number, object]
这让我觉得......反效果,在Python本身中有些矛盾(int
,float
,complex
只是直接从object
继承而来:< / p>
In [6]: isinstance(int(), complex)
Out[6]: False
In [7]: isinstance(int(), numbers.Complex)
Out[7]: True
然后我写了以下函数:
def numeric_check(num):
print "Is an int:", isinstance(num, int)
print "Is a float:", isinstance(num, float)
print "Is a complex:", isinstance(num, complex)
print "Is a numbers.Number:", isinstance(num, numbers.Number)
print "Is an numbers.Integer:", isinstance(num, numbers.Integral)
print "Is a numbers.Real:", isinstance(num, numbers.Real)
print "Is a numbers.Complex:", isinstance(num, numbers.Complex)
print "Is a numpy.integer:", isinstance(num, numpy.integer)
print "Is a numpy.floating:", isinstance(num, numpy.floating)
print "Is a numpy.complex:", isinstance(num, numpy.complex)
然后运行以下循环:
for dtype in [int, float, complex,
numpy.int16, numpy.int32, numpy.int64,
numpy.uint16, numpy.uint32, numpy.uint64,
numpy.float16, numpy.float32, numpy.float64, numpy.complex64]:
num = dtype()
print dtype
numeric_check(num)
我将为您提供全部输出,但有一些摘录:
type 'int' Is an int: True Is a float: False Is a complex: False Is a numbers.Number: True Is an numbers.Integer: True Is a numbers.Real: True Is a numbers.Complex: True Is a numpy.integer: False Is a numpy.floating: False Is a numpy.complex: False
从上面可以预见,int
是numbers
模块中任何类型的实例。在我的机器上,默认的numpy
整数是64位,让我们来看看:
type 'numpy.int64' Is an int: True Is a float: False Is a complex: False Is a numbers.Number: True Is an numbers.Integer: True Is a numbers.Real: True Is a numbers.Complex: True Is a numpy.integer: True Is a numpy.floating: False Is a numpy.complex: False
它与int
匹配的类型相同,并且另外作为numpy.integer
传递。我们来检查numpy.int16
:
type 'numpy.int16' Is an int: False Is a float: False Is a complex: False Is a numbers.Number: False Is an numbers.Integer: False Is a numbers.Real: False Is a numbers.Complex: False Is a numpy.integer: True Is a numpy.floating: False Is a numpy.complex: False
哎呀,它只以numpy.integer
传递。所以我的问题:
numpy
部分的类型分离是设计选择吗?numbers
模块而不是执行以下操作?类型检查:
isinstance(num, (int, numpy.integer)
isinstance(num, (float, numpy.floating)
isinstance(num, (complex, numpy.complex)
答案 0 :(得分:5)
数字中的类是抽象基类,你可以将numpy.int *注册为Integral:
import numpy as np
import numbers
numbers.Integral.register(numpy.integer)
a = np.int16(100)
isinstance(a, numbers.Integral)
但是numpy.int16的范围小于int,如果用numpy.int16进行计算,可能会发生溢出。