Gradient Boosting Regressor:“TypeError:无法使用灵活类型执行缩减”

时间:2014-03-28 09:14:31

标签: python gbm

我是python中的新手,我正在尝试使用Gradient Boosting Regressor开发一个程序。 我有两大组数据,一组训练集和一组测试集,我有完全相同的列。我的目标是使用训练集的信息预测测试集的SeriousDlqin2yrs列。

这是我写的程序:

import numpy as np
import csv as csv
import pandas as pd
from sklearn import ensemble
from sklearn.ensemble import GradientBoostingRegressor
from sklearn.utils import shuffle

# Load data

csv_file_object = csv.reader(open('cs-training-cleandata2NOLOG.csv', 'rb')) #Load in the training csv file
header = csv_file_object.next() #Skip the fist line as it is a header
train_data=[] #Creat a variable called 'train_data'
for row in csv_file_object: #Skip through each row in the csv file
train_data.append(row[1:]) #adding each row to the data variable
train_data = np.array(train_data) #Then convert from a list to an array

test_file_object = csv.reader(open('cs-test-cleandata2NOLOG.csv', 'rb')) #Load in the test csv file
header = test_file_object.next() #Skip the fist line as it is a header
test_data=[] #Creat a variable called 'test_data'
ids = []
for row in test_file_object: #Skip through each row in the csv file
ids.append(row[0])
test_data.append(row[1:]) #adding each row to the data variable
test_data = np.array(test_data) #Then convert from a list to an array

test_data = np.delete(test_data,[0],1) #remove SeriousDlqin2yrs

print 'Training '
# Fit regression model

clf = GradientBoostingRegressor(n_estimators=1000, min_samples_split=100, learning_rate=0.01)
clf = clf.fit(train_data[0::,1::],train_data[0::,0])

print 'Predicting'

output=clf.predict(test_data)

open_file_object = csv.writer(open("GradientBoostedRegression1.1.csv", "wb"))
open_file_object.writerow(["Id","Probability"])
open_file_object.writerows(zip(ids, output))

但是当我运行程序时,python给了我这个答案:

Traceback (most recent call last):
  File "C:\Users\Paul HONORE\Dropbox\Research Study\Kaggle\Bank\GradientBoostedRegression1.1.py", line 64, in <module>
    clf = clf.fit(train_data[0::,1::],train_data[0::,0])
  File "C:\Python27\lib\site-packages\sklearn\ensemble\gradient_boosting.py", line 1126, in fit
    return super(GradientBoostingRegressor, self).fit(X, y)
  File "C:\Python27\lib\site-packages\sklearn\ensemble\gradient_boosting.py", line 595, in fit
    self.init_.fit(X, y)
  File "C:\Python27\lib\site-packages\sklearn\ensemble\gradient_boosting.py", line 69, in fit
    self.mean = np.mean(y)
  File "C:\Python27\lib\site-packages\numpy\core\fromnumeric.py", line 2716, in mean
out=out, keepdims=keepdims)
  File "C:\Python27\lib\site-packages\numpy\core\_methods.py", line 62, in _mean
ret = um.add.reduce(arr, axis=axis, dtype=dtype, out=out, keepdims=keepdims)
TypeError: cannot perform reduce with flexible type

我不知道从哪里来,我读了很多关于这个问题的论文,但从未找到解决这一特定问题的方法。

提前感谢您的帮助。

1 个答案:

答案 0 :(得分:2)

我认为通过在数组函数中指定类型可以解决问题。 例如:

train_data = np.array(train_data, dtype = 'float_')