所以在我最后两个问题之后,我遇到了实际问题。也许有人在我的理论程序中发现了错误,或者我在编程中做错了。
我正在使用scipy.signal
在Python中实现带通滤波器(使用firwin函数)。我的原始信号由两个频率组成(w_1 = 600Hz,w_2 = 800Hz)。可能会有更多的频率,这就是我需要带通滤波器的原因。
在这种情况下,我想过滤600 Hz左右的频段,因此我将600 +/- 20Hz作为截止频率。当我使用lfilter
实现过滤器并在时域中重现信号时,会过滤正确的频率。
为了消除相移,我使用scipy.signal.freqz
绘制频率响应,其中返回h为firwin作为分子,1为预定义的计数器。
如freqz的文档中所述,我也绘制了相位(= = doc中的角度),并且能够查看频率响应图以获得滤波信号的频率600Hz的相移。
因此相位延迟t_p为
T_P = - (Tetha(W))/(W)
不幸的是,当我将此相位延迟添加到我的滤波信号的时间数据时,它与原始的600 Hz信号没有相同的相位。
我添加了代码。奇怪的是,在消除部分代码以保持最小值之前,滤波后的信号以正确的幅度开始 - 现在情况更糟。
################################################################################
#
# Filtering test
#
################################################################################
#
from math import *
import numpy as np
from scipy import signal
from scipy.signal import firwin, lfilter, lti
from scipy.signal import freqz
import matplotlib.pyplot as plt
import matplotlib.colors as colors
################################################################################
# Nb of frequencies in the original signal
nfrq = 2
F = [60,80]
################################################################################
# Sampling:
nitper = 16
nper = 50.
fmin = np.min(F)
fmax = np.max(F)
T0 = 1./fmin
dt = 1./fmax/nitper
#sampling frequency
fs = 1./dt
nyq_rate= fs/2
nitpermin = nitper*fmax/fmin
Nit = int(nper*nitpermin+1)
tps = np.linspace(0.,nper*T0,Nit)
dtf = fs/Nit
################################################################################
# Build analytic signal
# s = completeSignal(F,Nit,tps)
scomplete = np.zeros((Nit))
omg1 = 2.*pi*F[0]
omg2 = 2.*pi*F[1]
scomplete=scomplete+np.sin(omg1*tps)+np.sin(omg2*tps)
#ssingle = singleSignals(nfrq,F,Nit,tps)
ssingle=np.zeros((nfrq,Nit))
ssingle[0,:]=ssingle[0,:]+np.sin(omg1*tps)
ssingle[1,:]=ssingle[0,:]+np.sin(omg2*tps)
################################################################################
## Construction of the desired bandpass filter
lowcut = (60-2) # desired cutoff frequencies
highcut = (60+2)
ntaps = 451 # the higher and closer the signal frequencies, the more taps for the filter are required
taps_hamming = firwin(ntaps,[lowcut/nyq_rate, highcut/nyq_rate], pass_zero=False)
# Use lfilter to get the filtered signal
filtered_signal = lfilter(taps_hamming, 1, scomplete)
# The phase delay of the filtered signal
delay = ((ntaps-1)/2)/fs
plt.figure(1, figsize=(12, 9))
# Plot the signals
plt.plot(tps, scomplete,label="Original signal with %s freq" % nfrq)
plt.plot(tps-delay, filtered_signal,label="Filtered signal %s freq " % F[0])
plt.plot(tps, ssingle[0,:],label="original signal %s Hz" % F[0])
plt.grid(True)
plt.legend()
plt.xlim(0,1)
plt.xlabel('Time (s)')
plt.ylabel('Amplitude')
# Plot the frequency responses of the filter.
plt.figure(2, figsize=(12, 9))
plt.clf()
# First plot the desired ideal response as a green(ish) rectangle.
rect = plt.Rectangle((lowcut, 0), highcut - lowcut, 5.0,facecolor="#60ff60", alpha=0.2,label="ideal filter")
plt.gca().add_patch(rect)
# actual filter
w, h = freqz(taps_hamming, 1, worN=1000)
plt.plot((fs * 0.5 / np.pi) * w, abs(h), label="designed rectangular window filter")
plt.xlim(0,2*F[1])
plt.ylim(0, 1)
plt.grid(True)
plt.legend()
plt.xlabel('Frequency (Hz)')
plt.ylabel('Gain')
plt.title('Frequency response of FIR filter, %d taps' % ntaps)
plt.show()'
答案 0 :(得分:1)
FIR滤波器的延迟只是0.5*(n - 1)/fs
,其中n
是滤波器系数的数量(即"抽头"),fs
是采样率。你实现这个延迟很好。
问题是您的时间值数组tps
不正确。看一看
在1.0/(tps[1] - tps[0])
;你会发现它不等于fs
。
改变这个:
tps = np.linspace(0.,nper*T0,Nit)
例如,:
T = Nit / fs
tps = np.linspace(0., T, Nit, endpoint=False)
你的原始和过滤的60 Hz信号图将很好地排列。
再举一个例子,请参阅http://wiki.scipy.org/Cookbook/FIRFilter。 在那里的脚本中,延迟是在第86行计算的。在此之下,延迟用于绘制与滤波信号对齐的原始信号。
注意:食谱示例使用scipy.signal.lfilter
来应用过滤器。更有效的方法是使用numpy.convolve
。
答案 1 :(得分:0)
好像你可能已经回答了这个问题,但我相信这就是filtfilt函数的用法。基本上,它通过数据进行正向扫描和反向扫描,从而逆转初始滤波引入的相移。可能值得研究。