我试图在不使用for
循环的情况下在Python中构建以下矩阵:
A
[[ 0.1 0.2 0. 0. 0. ]
[ 1. 2. 3. 0. 0. ]
[ 0. 1. 2. 3. 0. ]
[ 0. 0. 1. 2. 3. ]
[ 0. 0. 0. 4. 5. ]]
我在NumPy中尝试了fill_diagonal
方法(参见下面的矩阵B),但它没有给出矩阵A中显示的相同矩阵:
B
[[ 1. 0.2 0. 0. 0. ]
[ 0. 2. 0. 0. 0. ]
[ 0. 0. 3. 0. 0. ]
[ 0. 0. 0. 1. 0. ]
[ 0. 0. 0. 4. 5. ]]
以下是我用来构造矩阵的Python代码:
import numpy as np
import scipy.linalg as sp # maybe use scipy to build diagonal matrix?
#---- build diagonal square array using "for" loop
m = 5
A = np.zeros((m, m))
A[0, 0] = 0.1
A[0, 1] = 0.2
for i in range(1, m-1):
A[i, i-1] = 1 # m-1
A[i, i] = 2 # m
A[i, i+1] = 3 # m+1
A[m-1, m-2] = 4
A[m-1, m-1] = 5
print('A \n', A)
#---- build diagonal square array without loop
B = np.zeros((m, m))
B[0, 0] = 0.1
B[0, 1] = 0.2
np.fill_diagonal(B, [1, 2, 3])
B[m-1, m-2] = 4
B[m-1, m-1] = 5
print('B \n', B)
那么有没有办法构建像矩阵A所示的对角矩阵而不使用for
循环?
答案 0 :(得分:4)
在scipy.sparse
中有这样的功能,例如:
from scipy.sparse import diags
C = diags([1,2,3], [-1,0,1], shape=(5,5), dtype=float)
C = C.toarray()
C[0, 0] = 0.1
C[0, 1] = 0.2
C[-1, -2] = 4
C[-1, -1] = 5
对角矩阵通常非常稀疏,因此您也可以将其保持为稀疏矩阵。根据应用的不同,这甚至可以带来很大的效率优势。
稀疏矩阵的效率增益可能会让您非常依赖矩阵大小。对于5x5阵列,我猜你真的很烦恼。但对于较大的矩阵,使用稀疏矩阵创建数组可以快得多,下面的示例用一个单位矩阵说明:
%timeit np.eye(3000)
# 100 loops, best of 3: 3.12 ms per loop
%timeit sparse.eye(3000)
# 10000 loops, best of 3: 79.5 µs per loop
但是当你需要对稀疏的数组进行数学运算时,会显示稀疏矩阵数据类型的真正强度:
%timeit np.eye(3000).dot(np.eye(3000))
# 1 loops, best of 3: 2.8 s per loop
%timeit sparse.eye(3000).dot(sparse.eye(3000))
# 1000 loops, best of 3: 1.11 ms per loop
或者当你需要使用一些非常大但稀疏的数组时:
np.eye(1E6)
# ValueError: array is too big.
sparse.eye(1E6)
# <1000000x1000000 sparse matrix of type '<type 'numpy.float64'>'
# with 1000000 stored elements (1 diagonals) in DIAgonal format>
答案 1 :(得分:0)
请注意,0
的数量始终为3(或者,如果您想要像这样的对角矩阵,则为常量):
In [10]:
import numpy as np
A1=[0.1, 0.2]
A2=[1,2,3]
A3=[4,5]
SPC=[0,0,0] #=or use np.zeros #spacing zeros
np.hstack((A1,SPC,A2,SPC,A2,SPC,A2,SPC,A3)).reshape(5,5)
Out[10]:
array([[ 0.1, 0.2, 0. , 0. , 0. ],
[ 1. , 2. , 3. , 0. , 0. ],
[ 0. , 1. , 2. , 3. , 0. ],
[ 0. , 0. , 1. , 2. , 3. ],
[ 0. , 0. , 0. , 4. , 5. ]])
In [11]:
import itertools #A more general way of doing it
np.hstack(list(itertools.chain(*[(item, SPC) for item in [A1, A2, A2, A2, A3]]))[:-1]).reshape(5,5)
Out[11]:
array([[ 0.1, 0.2, 0. , 0. , 0. ],
[ 1. , 2. , 3. , 0. , 0. ],
[ 0. , 1. , 2. , 3. , 0. ],
[ 0. , 0. , 1. , 2. , 3. ],
[ 0. , 0. , 0. , 4. , 5. ]])