http://ajeetsingh.org/2013/11/12/find-longest-palindrome-sub-sequence-in-a-string/
从这个网站上的代码:
/**
* To find longest palindrome sub-sequence
* It has time complexity O(N^2)
*
* @param source
* @return String
*/
public static String getLongestPalindromicSubSequence(String source){
int n = source.length();
int[][] LP = new int[n][n];
//All sub strings with single character will be a plindrome of size 1
for(int i=0; i < n; i++){
LP[i][i] = 1;
}
//Here gap represents gap between i and j.
for(int gap=1;gap<n;gap++){
for(int i=0;i<n-gap;i++ ){
int j=i+gap;
if(source.charAt(i)==source.charAt(j) && gap==1)
LP[i][j]=2;
else if(source.charAt(i)==source.charAt(j))
LP[i][j]=LP[i+1][j-1]+2;
else
LP[i][j]= Math.max(LP[i][j-1], LP[i+1][j]);
}
}
//Rebuilding string from LP matrix
StringBuffer strBuff = new StringBuffer();
int x = 0;
int y = n-1;
while(x < y){
if(source.charAt(x) == source.charAt(y)){
strBuff.append(source.charAt(x));
x++;
y--;
} else if(LP[x][y-1] > LP[x+1][y]){
y--;
} else {
x++;
}
}
StringBuffer strBuffCopy = new StringBuffer(strBuff);
String str = strBuffCopy.reverse().toString();
if(x == y){
strBuff.append(source.charAt(x)).append(str);
} else {
strBuff.append(str);
}
return strBuff.toString();
}
public static void main(String[] args) {
//System.out.println(getLongestPalindromicSubSequenceSize("XAYBZA"));
System.out.println(getLongestPalindromicSubSequence("XAYBZBA"));
}
内部for循环从i = 0到n-gap次执行。如何将此算法的时间复杂度变为O(N ^ 2)时间?
答案 0 :(得分:2)
执行内部循环体的次数是