在Pandas DataFrame中推断值

时间:2014-03-18 21:39:04

标签: python pandas extrapolation

在Pandas DataFrame中插入NaN单元非常容易:

In [98]: df
Out[98]:
            neg       neu       pos       avg
250    0.508475  0.527027  0.641292  0.558931
500         NaN       NaN       NaN       NaN
1000   0.650000  0.571429  0.653983  0.625137
2000        NaN       NaN       NaN       NaN
3000   0.619718  0.663158  0.665468  0.649448
4000        NaN       NaN       NaN       NaN
6000        NaN       NaN       NaN       NaN
8000        NaN       NaN       NaN       NaN
10000       NaN       NaN       NaN       NaN
20000       NaN       NaN       NaN       NaN
30000       NaN       NaN       NaN       NaN
50000       NaN       NaN       NaN       NaN

[12 rows x 4 columns]

In [99]: df.interpolate(method='nearest', axis=0)
Out[99]:
            neg       neu       pos       avg
250    0.508475  0.527027  0.641292  0.558931
500    0.508475  0.527027  0.641292  0.558931
1000   0.650000  0.571429  0.653983  0.625137
2000   0.650000  0.571429  0.653983  0.625137
3000   0.619718  0.663158  0.665468  0.649448
4000        NaN       NaN       NaN       NaN
6000        NaN       NaN       NaN       NaN
8000        NaN       NaN       NaN       NaN
10000       NaN       NaN       NaN       NaN
20000       NaN       NaN       NaN       NaN
30000       NaN       NaN       NaN       NaN
50000       NaN       NaN       NaN       NaN

[12 rows x 4 columns]

我还希望它使用给定的方法推断插值范围之外的NaN值。我怎么能最好地做到这一点?

3 个答案:

答案 0 :(得分:14)

外推Pandas DataFrame s

DataFrame可能是外推的,但是,在pandas中没有简单的方法调用,需要另一个库(例如scipy.optimize)。

外推

一般来说,推断需要一个人来推断某些assumptions about the data。一种方法是通过curve fitting对数据进行一些通用参数化方程,以找到最能描述现有数据的参数值,然后将其用于计算超出此数据范围的值。这种方法的困难和限制问题是,当选择参数化方程时,必须对趋势做出一些假设。这可以通过不同方程的试验和误差来找到,以给出期望的结果,或者有时可以从数据源推断出它。问题中提供的数据实际上不足以获得良好拟合曲线的数据集;但是,它足以说明。

以下是使用3 rd 阶多项式外推DataFrame的示例

  

f x )= a x 3 + b x 2 + c x + d {{3 }}

此通用函数(func())曲线拟合到每列上以获取唯一的列特定参数(即 a b c < / em>, d )。然后,这些参数化方程用于推导NaN s所有索引的每列中的数据。

import pandas as pd
from cStringIO import StringIO
from scipy.optimize import curve_fit

df = pd.read_table(StringIO('''
                neg       neu       pos       avg
    0           NaN       NaN       NaN       NaN
    250    0.508475  0.527027  0.641292  0.558931
    500         NaN       NaN       NaN       NaN
    1000   0.650000  0.571429  0.653983  0.625137
    2000        NaN       NaN       NaN       NaN
    3000   0.619718  0.663158  0.665468  0.649448
    4000        NaN       NaN       NaN       NaN
    6000        NaN       NaN       NaN       NaN
    8000        NaN       NaN       NaN       NaN
    10000       NaN       NaN       NaN       NaN
    20000       NaN       NaN       NaN       NaN
    30000       NaN       NaN       NaN       NaN
    50000       NaN       NaN       NaN       NaN'''), sep='\s+')

# Do the original interpolation
df.interpolate(method='nearest', xis=0, inplace=True)

# Display result
print 'Interpolated data:'
print df
print

# Function to curve fit to the data
def func(x, a, b, c, d):
    return a * (x ** 3) + b * (x ** 2) + c * x + d

# Initial parameter guess, just to kick off the optimization
guess = (0.5, 0.5, 0.5, 0.5)

# Create copy of data to remove NaNs for curve fitting
fit_df = df.dropna()

# Place to store function parameters for each column
col_params = {}

# Curve fit each column
for col in fit_df.columns:
    # Get x & y
    x = fit_df.index.astype(float).values
    y = fit_df[col].values
    # Curve fit column and get curve parameters
    params = curve_fit(func, x, y, guess)
    # Store optimized parameters
    col_params[col] = params[0]

# Extrapolate each column
for col in df.columns:
    # Get the index values for NaNs in the column
    x = df[pd.isnull(df[col])].index.astype(float).values
    # Extrapolate those points with the fitted function
    df[col][x] = func(x, *col_params[col])

# Display result
print 'Extrapolated data:'
print df
print

print 'Data was extrapolated with these column functions:'
for col in col_params:
    print 'f_{}(x) = {:0.3e} x^3 + {:0.3e} x^2 + {:0.4f} x + {:0.4f}'.format(col, *col_params[col])

推断结果

Interpolated data:
            neg       neu       pos       avg
0           NaN       NaN       NaN       NaN
250    0.508475  0.527027  0.641292  0.558931
500    0.508475  0.527027  0.641292  0.558931
1000   0.650000  0.571429  0.653983  0.625137
2000   0.650000  0.571429  0.653983  0.625137
3000   0.619718  0.663158  0.665468  0.649448
4000        NaN       NaN       NaN       NaN
6000        NaN       NaN       NaN       NaN
8000        NaN       NaN       NaN       NaN
10000       NaN       NaN       NaN       NaN
20000       NaN       NaN       NaN       NaN
30000       NaN       NaN       NaN       NaN
50000       NaN       NaN       NaN       NaN

Extrapolated data:
               neg          neu         pos          avg
0         0.411206     0.486983    0.631233     0.509807
250       0.508475     0.527027    0.641292     0.558931
500       0.508475     0.527027    0.641292     0.558931
1000      0.650000     0.571429    0.653983     0.625137
2000      0.650000     0.571429    0.653983     0.625137
3000      0.619718     0.663158    0.665468     0.649448
4000      0.621036     0.969232    0.708464     0.766245
6000      1.197762     2.799529    0.991552     1.662954
8000      3.281869     7.191776    1.702860     4.058855
10000     7.767992    15.272849    3.041316     8.694096
20000    97.540944   150.451269   26.103320    91.365599
30000   381.559069   546.881749   94.683310   341.042883
50000  1979.646859  2686.936912  467.861511  1711.489069

Data was extrapolated with these column functions:
f_neg(x) = 1.864e-11 x^3 + -1.471e-07 x^2 + 0.0003 x + 0.4112
f_neu(x) = 2.348e-11 x^3 + -1.023e-07 x^2 + 0.0002 x + 0.4870
f_avg(x) = 1.542e-11 x^3 + -9.016e-08 x^2 + 0.0002 x + 0.5098
f_pos(x) = 4.144e-12 x^3 + -2.107e-08 x^2 + 0.0000 x + 0.6312

avg

的图表

(Eq. 1)

如果没有更大的数据集或知道数据的来源,这个结果可能完全错误,但应该例证推断DataFrame的过程。 func()中的假设等式可能需要播放以获得正确的外推法。此外,没有尝试使代码有效。

<强>更新

如果您的索引是非数字的,例如DatetimeIndexExtrapolated Data,那么如何推断它们。

答案 1 :(得分:5)

import pandas as pd
try:
    # for Python2
    from cStringIO import StringIO 
except ImportError:
    # for Python3
    from io import StringIO

df = pd.read_table(StringIO('''
                neg       neu       pos       avg
    0           NaN       NaN       NaN       NaN
    250    0.508475  0.527027  0.641292  0.558931
    999         NaN       NaN       NaN       NaN
    1000   0.650000  0.571429  0.653983  0.625137
    2000        NaN       NaN       NaN       NaN
    3000   0.619718  0.663158  0.665468  0.649448
    4000        NaN       NaN       NaN       NaN
    6000        NaN       NaN       NaN       NaN
    8000        NaN       NaN       NaN       NaN
    10000       NaN       NaN       NaN       NaN
    20000       NaN       NaN       NaN       NaN
    30000       NaN       NaN       NaN       NaN
    50000       NaN       NaN       NaN       NaN'''), sep='\s+')

print(df.interpolate(method='nearest', axis=0).ffill().bfill())

产量

            neg       neu       pos       avg
0      0.508475  0.527027  0.641292  0.558931
250    0.508475  0.527027  0.641292  0.558931
999    0.650000  0.571429  0.653983  0.625137
1000   0.650000  0.571429  0.653983  0.625137
2000   0.650000  0.571429  0.653983  0.625137
3000   0.619718  0.663158  0.665468  0.649448
4000   0.619718  0.663158  0.665468  0.649448
6000   0.619718  0.663158  0.665468  0.649448
8000   0.619718  0.663158  0.665468  0.649448
10000  0.619718  0.663158  0.665468  0.649448
20000  0.619718  0.663158  0.665468  0.649448
30000  0.619718  0.663158  0.665468  0.649448
50000  0.619718  0.663158  0.665468  0.649448

注意:我稍稍更改了您的df以显示nearest的插值与执行df.fillna的方式不同。 (参见索引为999的行。)

我还添加了一行索引为0的NaN,以表明bfill()也可能是必需的。

答案 2 :(得分:1)

我遇到了同样的问题,但我找不到任何特定于 Pandas 的直接和有用的(没有定义新函数)。但是,我发现 InterpolatedUnivariateSpline (来自 scipy)对于外推非常有用。它可以给你改变订单的灵活性,而不是给你一个常数。

这是相关的例子:

import matplotlib.pyplot as plt
from scipy.interpolate import InterpolatedUnivariateSpline
x = np.linspace(-3, 3, 50)
y = np.exp(-x**2) + 0.1 * np.random.randn(50)
spl = InterpolatedUnivariateSpline(x, y)
plt.plot(x, y, 'ro', ms=5)
xs = np.linspace(-3, 3, 1000)
plt.plot(xs, spl(xs), 'g', lw=3, alpha=0.7)
plt.show()