训练我的分类器时,我收到此错误:
图像步骤错误(矩阵不连续,因此其行数无法更改)在重塑,文件/home/denn/Downloads/opencv-2.4.6.1/modules/core/src/matrix.cpp ,第802行
在抛出' cv :: Exception'的实例后终止调用 what():/ home / denn/Downloads/opencv-2.4.6.1/modules/core/src/matrix.cpp:802:错误:( - 13)矩阵不连续,因此其行数无法更改在功能重塑
中止(核心倾销)
我正在使用C ++编写自动车牌识别项目。现在剩下的就是训练我的SVM。
在研究完这个之后,我将所有图像的大小调整为450 x 450,但错误仍然存在。 我研究过并环顾四周,但没有一种解决方案适合我。
任何给予的帮助都将受到高度赞赏。
// Main entry code OpenCV
#include <cv.h>
#include <highgui.h>
#include <cvaux.h>
#include <iostream>
#include <vector>
using namespace std;
using namespace cv;
int main ( int argc, char** argv )
{
cout << "OpenCV Training SVM Automatic Number Plate Recognition\n";
cout << "\n";
char* path_Plates;
char* path_NoPlates;
int numPlates;
int numNoPlates;
int imageWidth=450; //144
int imageHeight=450; //33
//Check if user specify image to process
if(argc >= 5 )
{
numPlates= atoi(argv[1]);
numNoPlates= atoi(argv[2]);
path_Plates= argv[3];
path_NoPlates= argv[4];
}else{
cout << "Usage:\n" << argv[0] << " <num Plate Files> <num Non Plate Files> <path to plate folder files> <path to non plate files> \n";
return 0;
}
Mat classes;//(numPlates+numNoPlates, 1, CV_32FC1);
Mat trainingData;//(numPlates+numNoPlates, imageWidth*imageHeight, CV_32FC1 );
Mat trainingImages;
vector<int> trainingLabels;
for(int i=0; i< numPlates; i++)
{
stringstream ss(stringstream::in | stringstream::out);
ss << path_Plates << i << ".jpg";
Mat img=imread(ss.str(), 0);
img= img.reshape(1, 1);
trainingImages.push_back(img);
trainingLabels.push_back(1);
}
for(int i=0; i< numNoPlates; i++)
{
stringstream ss(stringstream::in | stringstream::out);
ss << path_NoPlates << i << ".jpg";
Mat img=imread(ss.str(), 0);
img= img.reshape(1, 1);
trainingImages.push_back(img);
trainingLabels.push_back(0);
}
Mat(trainingImages).copyTo(trainingData);
//trainingData = trainingData.reshape(1,trainingData.rows);
trainingData.convertTo(trainingData, CV_32FC1);
Mat(trainingLabels).copyTo(classes);
FileStorage fs("SVM.xml", FileStorage::WRITE);
fs << "TrainingData" << trainingData;
fs << "classes" << classes;
fs.release();
return 0;
}
我编辑了代码并将其设为:
// Main entry code OpenCV
#include <cv.h>
#include <highgui.h>
#include <cvaux.h>
#include <iostream>
#include <vector>
#include <iostream>
using namespace std;
using namespace cv;
int main ( int argc, char** argv )
{
cout << "OpenCV Training SVM Automatic Number Plate Recognition\n";
cout << "\n";
char* path_Plates;
char* path_NoPlates;
int numPlates;
int numNoPlates;
int imageWidth=450; //144
int imageHeight=450; //33
//Check if user specify image to process
if(argc >= 5 )
{
numPlates= atoi(argv[1]);
numNoPlates= atoi(argv[2]);
path_Plates= argv[3];
path_NoPlates= argv[4];
}else{
cout << "Usage:\n" << argv[0] << " <num Plate Files> <num Non Plate Files> <path to plate folder files> <path to non plate files> \n";
return 0;
}
Mat classes;//(numPlates+numNoPlates, 1, CV_32FC1);
Mat trainingData;//(numPlates+numNoPlates, imageWidth*imageHeight, CV_32FC1 );
Mat trainingImages;
vector<int> trainingLabels;
Mat classes = new Mat();
Mat trainingData = new Mat();
Mat trainingImages = new Mat();
Mat trainingLabels = new Mat();
for(int i=0; i< numPlates; i++)
{
stringstream ss(stringstream::in | stringstream::out);
ss << path_Plates << i << ".png";
Mat img=imread(ss.str(), 0);
img= img.reshape(1, 1);
trainingImages.push_back(img);
trainingLabels.push_back(1);//trainingLabels.push_back(Mat.ones(new Size(1, 1), CvType.CV_32FC1));//trainingLabels.push_back(1);
}
for(int i=0; i< numNoPlates; i++)
{
stringstream ss(stringstream::in | stringstream::out);
ss << path_NoPlates << i << ".png";
Mat img=imread(ss.str(), 0);
img= img.reshape(1, 1); //img= img.clone().reshape(1, 1);
trainingImages.push_back(img);
trainingLabels.push_back(0);//trainingLabels.push_back(Mat.zeros(new Size(1, 1), CvType.CV_32FC1));//trainingLabels.push_back(0);
}
trainingImages.copyTo(trainingData);
//trainingData = trainingData.reshape(1,trainingData.rows);
trainingData.convertTo(trainingData, CV_32FC1);
trainingLabels.copyTo(classes);
FileStorage fs("SVM.xml", FileStorage::WRITE);
fs << "TrainingData" << trainingData;
fs << "classes" << classes;
fs.release();
return 0;
}
但是我在编译时遇到了这个错误:
/home/denn/Desktop/NumberPlateRecognition/trainSVM.cpp:52:27: error: conversion from ‘cv::Mat*’ to non-scalar type ‘cv::Mat’ requested
/home/denn/Desktop/NumberPlateRecognition/trainSVM.cpp:52:27: error: conversion from ‘cv::Mat*’ to non-scalar type ‘cv::Mat’ requested
/home/denn/Desktop/NumberPlateRecognition/trainSVM.cpp:53:32: error: conversion from ‘cv::Mat*’ to non-scalar type ‘cv::Mat’ requested
/home/denn/Desktop/NumberPlateRecognition/trainSVM.cpp:55:34: error: conversion from ‘cv::Mat*’ to non-scalar type ‘cv::Mat’ requested
/home/denn/Desktop/NumberPlateRecognition/trainSVM.cpp:56:34: error: conversion from ‘cv::Mat*’ to non-scalar type ‘cv::Mat’ requested
make[2]: *** [CMakeFiles/trainSVM.dir/trainSVM.cpp.o] Error 1
make[1]: *** [CMakeFiles/trainSVM.dir/all] Error 2
make: *** [all] Error 2
我有什么建议吗?
答案 0 :(得分:1)
正如berak在上面的评论中指出的那样,在以下情况下,您的cv::Mat
可能会不连续:
如果使用Mat :: col(),Mat :: diag()等提取矩阵的一部分,或者为外部分配的数据构造矩阵头,则此类矩阵可能不再具有[连续的( )]属性。
正如他们在上述参考文献中指出的那样,使用Mat::create
创建矩阵并且您不会遇到此问题。
更新:
所以,正如我们的朋友berak在上面的评论中指出的那样,函数Mat::clone
将为你解决问题。它调用函数Mat::create
。我刚尝试了以下代码,它就像一个魅力。
Mat trainingImages;
vector<int> trainingLabels;
for(int i=0; i< numPlates; i++)
{
stringstream ss;
ss << path_Plates << "grumpy" << i << ".jpg";
std::cout << ss.str() << std::endl;
Mat img =imread(ss.str(), CV_LOAD_IMAGE_GRAYSCALE);
if(! img.data ) {
cout << "Could not open or find the image" << std::endl ;
return -1;
}
else {
img = img.clone().reshape(0,1);
trainingImages.push_back(img);
trainingLabels.push_back(i);
}
}
然而,一些注意事项,看起来您可能没有正确的头文件名。我在Ubuntu 12.04上使用了以下OpenCV 2.4.8:
#include <opencv2/opencv.hpp>
#include <opencv2/highgui/highgui.hpp>
#include <opencv2/ml/ml.hpp>
此外,请确保使用OpenCV库(即opencv_core和opencv_ml)进行编译。希望能帮助您寻求板块识别。