我正在编写程序来使用SVM和BoW对对象进行分类。当我尝试使用TrainData :: create()成员函数来创建训练SVM分类器所需的数据时,我收到以下错误。
OpenCV错误:断言失败(response.type()== CV_32F || responses.type()== CV_32S)in setData
这是我从导演读取列车数据,计算每个列车图像的BoW直方图,创建矩阵中所有列车图像的所有描述符矩阵并创建列车数据,标签然后训练SVM的功能
void trainClassifier(string dictionaryPath, string trainDataPath, string saveClassifierPath, int samples){
//Write file
FileStorage readFile(dictionaryPath, FileStorage::READ);
//Load into Dictionary matrix
readFile["Data"] >> dictionary;
if(dictionary.empty() == false)
{
cout << "Error loading visual vocalbulary" << endl;
}
//Set the Bow descripter with the dictionary
testBOW.setVocabulary(dictionary);
//Inititate variables
vector<KeyPoint> keypointTrain;
vector<DMatch> matchTrain;
Mat descriptorTrain;
//inputTrain -> input images, inputFeatures -> BoW descriptor output
Mat inputTrain;
Mat inputFeatures;
//Label array
vector<string> label;
//Create a string to read files from directory
string updatedDataPath;
for(int i = 1; i <= samples; i++)
{
//Update the string updateDataPath to correspond the image FILENAME with each iteration
updatedDataPath.append(trainDataPath);
updatedDataPath += to_string(i);
updatedDataPath.append(".JPEG");
//Read FILE from the updated datapath
inputTrain = imread(updatedDataPath);
//Convert to single channel, since classifier takes only single channel data
cvtColor(inputTrain, inputTrain, CV_BGR2GRAY);
//Generate BoW features/histogram for the train image
testBOW.compute(inputTrain, keypointTrain, inputFeatures);
//Load the data in the descriptor Matrix
descriptorTrain.push_back(inputFeatures);
//Generate label according to the sample
if(samples > 1 && samples <= 10)
{
label.push_back("OBJ1 POSSITIVE");
}
else if (samples > 11 && samples <= 20)
{
label.push_back("OBJ1 NEGATIVE");
}
//Reset data path
updatedDataPath.clear();
}
//Convert the descriptor matrix into 32-pt float to make it compatible with classifier
if(descriptorTrain.type() != CV_32F)
{
descriptorTrain.convertTo(descriptorTrain, CV_32F);
}
//Create train data using TrainData::create()
Ptr<TrainData> trainData = TrainData::create(descriptorTrain, ROW_SAMPLE, label);
//Iniitialize Support vector based classifier (SVM) to classify and detect object
Ptr<SVM>SVM = SVM::create();
SVM->setType(SVM::C_SVC);
SVM->setKernel(SVM::LINEAR);
SVM->setTermCriteria(TermCriteria(TermCriteria::MAX_ITER, 100, 1e-6));
//Now train the SVM
SVM->trainAuto(trainData);
SVM->save(saveClassifierPath);
cout << "Classifier training status: SUCCESSFUL" << endl;}
感谢任何帮助。谢谢和欢呼:)
答案 0 :(得分:1)
您使用order_items
作为TrainData回复。
vector<string>
它应该是//Label array
vector<string> label;
// [long code]
//Create train data using TrainData::create()
Ptr<TrainData> trainData = TrainData::create(descriptorTrain, ROW_SAMPLE, label);
Mat
或CV_32F
,如错误所示。
您可以在以下位置确认: