我在我的项目中这样做,用于使用opencv python识别相机中显示的标志。我已经尝试过使用冲浪,但由于一些标志的功能较少,比如红色和蓝色作为标志的特征,它并不总能给出正确的识别。 关于我能做什么来做这个基于颜色直方图识别标志的项目的建议?非常感谢你的帮助。
例如,我展示了越南的旗帜,该程序将比较显示旗帜与旗帜图像数据库,并认识到它是越南的旗帜。注意:这是我发布的链接https://stackoverflow.com/questions/22424745/compare-a-single-image-to-database-of-images-and-find-the-closest-match-using-th中的相同问题,但由于连接速度慢,我无法对其进行编辑
import cv2
import numpy as np
import pyttsx
import sys
import os
import operator
hbins = 180
sbins = 255
hrange = [0,180]
srange = [0,256]
ranges = hrange+srange
flags=["Cambodia.jpg","Laos.jpg","Malaysia.jpg","Myanmar.jpg","Philippines.jpg","Singapore.jpg","Thailand.jpg","Vietnam.jpg","Indonesia.jpg","Brunei.jpg"]
list_of_pics=[]
valueCompare=[]
cam = cv2.VideoCapture(0)
while True:
_, frame = cam.read(0)
cv2.imshow('asdas',frame)
list_of_pics=[]
valueCompare=[]
k=cv2.waitKey(10)
if(k==32):
cv2.imwrite("pic.jpg",frame)#the image from the camera
img = "pic.jpg"
for i in flags:
base = cv2.imread(img)
test1 = cv2.imread(i)#the flags to be compared with
rows,cols = base.shape[:2]
basehsv = cv2.cvtColor(base,cv2.COLOR_BGR2HSV)
test1hsv = cv2.cvtColor(test1,cv2.COLOR_BGR2HSV)
histbase = cv2.calcHist(basehsv,[0,1],None,[180,256],ranges)
cv2.normalize(histbase,histbase,0,255,cv2.NORM_MINMAX)
histtest1 = cv2.calcHist(test1hsv,[0,1],None,[180,256],ranges)
cv2.normalize(histtest1,histtest1,0,255,cv2.NORM_MINMAX)
comHist=cv2.compareHist(histbase,histtest1,3)
valueCompare.append(comHist)
picDict={"comhist":comHist,"name":i}
list_of_pics.append(picDict)
newlist = sorted(list_of_pics, key=operator.itemgetter('comhist')) #get the max value of all the compared images
#print newlist
matched_image=newlist[0]['name']
print matched_image
elif k == 27:
break
cv2.destroyAllWindows()
用于模板匹配代码。
k=cv2.waitKey(10)
methods = 'cv2.TM_CCOEFF_NORMED'#only the one method to be used
list_of_pics=[]
if(k==32):
for flag in flags:
img = cv2.imread('Singapore.jpg',0)
#img = img.copy()
template = cv2.imread(flag,0)
w, h = template.shape[::-1]
# All the 6 methods for comparison in a list
method = eval(methods)#
#print method
# Apply template Match
res = cv2.matchTemplate(img,template,method)
#print res
min_val, max_val, min_loc, max_loc = cv2.minMaxLoc(res)
#print min_val, max_val
matchVal=res[0][0]
picDict={"matchVal":matchVal,"name":flag}
list_of_pics.append(picDict)
#print res[0][0]
newlist = sorted(list_of_pics, key=operator.itemgetter('matchVal'),reverse=True)
print newlist
matched_image=newlist[0]['name']
print matched_image
elif k == 27:
break
cv2.destroyAllWindows()
答案 0 :(得分:1)
计算直方图后,您可以使用直方图匹配功能。
double result = compareHist( image, template, compare_method );
结果的值取决于您使用的compare_method
。例如,如果您使用correlation
作为比较方法,那么result
的值将介于0-1和更高之间,匹配值就越高。
替代方案:
如果您认为数据库中的标志大小和方向与当前图像几乎相似,那么您甚至不需要计算直方图。在这种情况下,您可以直接使用openCV的matchTemplate()。