我正在尝试使用pandas来获取value_counts。发出命令时:
my_variable.value_counts().keys()
我得到以下输出:
指数([1.0,0.0,1.00999999046,2.0,2.00999999046,3.0, 1.01000022888,3.00999999046,4.00999999046,4.0,6.00999999046,5.00999999046,8.00999999046,2.01000022888,5.0 0.990000009537,9.00999999046,6.0,7.0,12.0099999905,7.00999999046,10.0099999905,3.01000022888,19.0199999809,11.0099999905,20.0199999809,8.0,14.0199999809,4.01000022888,5.01000022888,38.0399999619, 46.0499999523,40.0399999619,20.0299999714,16.0199999809,18.0299999714,9.0119999998093,11.0199999809,21.0199999809,-10651.4099998,-4643.13999987,-6388.92000008,-5779.98000002],dtype = object)
问题是,如何访问由浮点值组成的键,例如键1.00999999046?
我可以使用:
访问索引1.0my_variable.value_counts()[1]
但是,如果我尝试
my_variable.value_counts()[1.00999999046]
然后我收到错误声明:
KeyError:1.00999999046
我认为这可能与指数的dytpe =对象有关,但我不知道该怎么做才能解释这一点。任何指导都将不胜感激。
答案 0 :(得分:2)
这在> = 0.13中工作得很好。在0.13浮点数之前,指数并不特别。他们现在有逻辑来避免将索引器舍入/截断为整数。在其他工作中,值被查找,而不是被强制(对于Float64Index)。事实上,这是这种类型索引的重点,使[],ix,loc
的统一索引模型返回相同的结果。
请参阅the docs
In [8]: i = Index([1.0, 0.0, 1.00999999046, 2.0, 2.00999999046, 3.0, 1.01000022888, 3.00999999046, 4.00999999046, 4.0, 6.00999999046, 5.00999999046, 8.00999999046, 2.01000022888, 5.0, 0.990000009537, 9.00999999046, 6.0, 7.0, 12.0099999905, 7.00999999046, 10.0099999905, 3.01000022888, 19.0199999809, 11.0099999905, 20.0199999809, 8.0, 14.0199999809, 4.01000022888, 5.01000022888, 38.0399999619, 46.0499999523, 40.0399999619, 20.0299999714, 16.0199999809, 18.0299999714, 9.01999998093, 11.0199999809, 21.0199999809, -10651.4099998, -4643.13999987, -6388.92000008, -5779.98000002])
In [9]: i
Out[9]: Float64Index([1.0, 0.0, 1.00999999046, 2.0, 2.00999999046, 3.0, 1.01000022888, 3.00999999046, 4.00999999046, 4.0, 6.00999999046, 5.00999999046, 8.00999999046, 2.01000022888, 5.0, 0.990000009537, 9.00999999046, 6.0, 7.0, 12.0099999905, 7.00999999046, 10.0099999905, 3.01000022888, 19.0199999809, 11.0099999905, 20.0199999809, 8.0, 14.0199999809, 4.01000022888, 5.01000022888, 38.0399999619, 46.0499999523, 40.0399999619, 20.0299999714, 16.0199999809, 18.0299999714, 9.01999998093, 11.0199999809, 21.0199999809, -10651.4099998, -4643.13999987, -6388.92000008, -5779.98000002], dtype='object')
In [10]: s = Series(i.tolist() * 3)
In [13]: s.value_counts()[1.00999999046]
Out[13]: 3
请注意,索引的显示是值的截断视图(它们完全存在,只是不打印超出2个位置)
In [14]: s.value_counts().sort_index()
Out[14]:
-10651.41 3
-6388.92 3
-5779.98 3
-4643.14 3
0.00 3
0.99 3
1.00 3
1.01 3
1.01 3
2.00 3
2.01 3
2.01 3
3.00 3
3.01 3
3.01 3
4.00 3
4.01 3
4.01 3
5.00 3
5.01 3
5.01 3
6.00 3
6.01 3
7.00 3
7.01 3
8.00 3
8.01 3
9.01 3
9.02 3
10.01 3
11.01 3
11.02 3
12.01 3
14.02 3
16.02 3
18.03 3
19.02 3
20.02 3
20.03 3
21.02 3
38.04 3
40.04 3
46.05 3
dtype: int64
In [15]: s.value_counts()[1.00999999046]
Out[15]: 3
In [16]: s.value_counts().keys()
Out[16]: Float64Index([3.00999999046, 14.0199999809, 2.00999999046, -10651.4099998, 2.01000022888, 18.0299999714, 20.0299999714, 16.0199999809, 6.00999999046, 3.01000022888, 8.0, 11.0199999809, 19.0199999809, 7.0, 1.01000022888, 0.990000009537, 4.0, 3.0, 2.0, 1.0, 46.0499999523, 11.0099999905, 12.0099999905, 4.00999999046, 40.0399999619, 7.00999999046, 9.01999998093, 6.0, -6388.92000008, 21.0199999809, 38.0399999619, 5.0, 20.0199999809, 4.01000022888, -5779.98000002, 1.00999999046, 9.00999999046, -4643.13999987, 5.01000022888, 10.0099999905, 8.00999999046, 5.00999999046, 0.0], dtype='object')