使用loadtxt(numpy)读取缺少数据的文件

时间:2014-03-11 20:46:42

标签: python numpy missing-data genfromtxt

当我尝试用

读取下面的数据时
loadtxt('RSTN')

我收到错误,然后尝试使用

填写缺少的数据
genfromtxt('RSTN',delimiter=' ')

但是我收到了像Line #31112 (got 7 columns instead of 8)

这样的错误

其实我想用nan填写这个缺失的数据  或类似的东西

我在一个名为RSTN

的ascii文件中获得了这样的数据
 20120127165126     19     42     54     91    113    147    188    284
 20120127165127     19     42     54     91    113    147    188    284
 20120127165128     19     42     54     90    113    147    188    284
 20120127165129     19     42     54     90    113    147    188    284
 20120127165130     19     42     54     88    107    131    155    235
 20120127165131     19     42     54     72     79     79     92    154
 20120127165132     19     42     54     45     43     42     50     97
 20120127165133     19     42     54     24     21     21     25     65
 20120127165134     19     42     54     11      8      9     12     46
 20120127165135     19     42     54      5      2      3      7     35
 20120127165136     18     42     54      2      0      1      4     29
 20120127165137     19     42     54      0             0      2     25
 20120127165138     19     42     53      0             0      1     22
 20120127165139     19     42     54      0             0      1     19
 20120127165140     19     42     54      0             0      0     17
 20120127165141     19     42     54      0             0      0     14
 20120127165142     19     42     54      0             0      0     14
 20120127165143     19     42     54      0             0      0     14
 20120127165144     19     42     54      0                    0     13
 20120127165145     19     42     54      0                    0     14
 20120127165146     19     42     54      0             0      0     14
 20120127165147     19     42     54      0             0      1     15
 20120127165148     19     42     54      0             0      1     15
 20120127165149     19     42     54      0             0      1     15
 20120127165150     20     42     53      0                    1     15
 20120127165151     20     42     53      0                    1     17
 20120127165152     20     42     53      0                    1     17
 20120127165153     19     42     53      0             0      1     17
 20120127165154     20     42     53      0                    1     17
 20120127165155     20     42     53      0                    1     17
 20120127165156     20     42     53      0             0      1     17
 20120127165157     19     42     54      0             0      1     17
 20120127165158     19     42     55      0             0      1     17
 20120127165159     19     42     55      0             0      1     17
 20120127165200     20     42     56      0             0      1     17
 20120127165201     21     42     56      0             0      1     17

我做了这个

from pandas import *
data=read_fwf('26JAN12.K7O', colspecs='infer', header=None)

我得到了

Traceback (most recent call last):
  File "<stdin>", line 1, in <module>
  File "C:\Anaconda\lib\site-packages\pandas\io\parsers.py", line 429, in read_fwf
    return _read(filepath_or_buffer, kwds)
  File "C:\Anaconda\lib\site-packages\pandas\io\parsers.py", line 198, in _read
    parser = TextFileReader(filepath_or_buffer, **kwds)
  File "C:\Anaconda\lib\site-packages\pandas\io\parsers.py", line 479, in __init__
    self._make_engine(self.engine)
  File "C:\Anaconda\lib\site-packages\pandas\io\parsers.py", line 592, in _make_engine
    self._engine = klass(self.f, **self.options)
  File "C:\Anaconda\lib\site-packages\pandas\io\parsers.py", line 1954, in __init__
    PythonParser.__init__(self, f, **kwds)
  File "C:\Anaconda\lib\site-packages\pandas\io\parsers.py", line 1237, in __init__
    self._make_reader(f)
  File "C:\Anaconda\lib\site-packages\pandas\io\parsers.py", line 1957, in _make_reader
    self.data = FixedWidthReader(f, self.colspecs, self.delimiter)
  File "C:\Anaconda\lib\site-packages\pandas\io\parsers.py", line 1933, in __init__
    raise AssertionError()
AssertionError

2 个答案:

答案 0 :(得分:1)

如果您有pandas,则可以使用pd.read_fwf解析它:

import pandas as pd
df = pd.read_fwf('data', colspecs='infer', header=None, parse_dates=[[0]])
print(df)

产量

                     0   1   2   3   4    5    6    7    8
0  2012-01-27 16:51:26  19  42  54  91  113  147  188  284
1  2012-01-27 16:51:27  19  42  54  91  113  147  188  284
...
11 2012-01-27 16:51:37  19  42  54   0  NaN    0    2   25
12 2012-01-27 16:51:38  19  42  53   0  NaN    0    1   22
13 2012-01-27 16:51:39  19  42  54   0  NaN    0    1   19

[36 rows x 9 columns]

或者,感谢DSM,使用np.genfromtxt,您可以通过将宽度列表传递给delimiter参数来解析固定宽度数据:

import numpy as np
np.set_printoptions(formatter={'float':'{:g}'.format})
arr = np.genfromtxt('data', delimiter=[18]+[7]*8)
print(arr)

产量

[[2.01201e+13 19 42 54 91 113 147 188 284]
 [2.01201e+13 19 42 54 91 113 147 188 284]
 [2.01201e+13 19 42 54 90 113 147 188 284]
...
 [2.01201e+13 19 42 54 0 nan 0 2 25]
 [2.01201e+13 19 42 53 0 nan 0 1 22]
 [2.01201e+13 19 42 54 0 nan 0 1 19]
...]

答案 1 :(得分:0)

我遇到了类似的问题,从缺少数据的制表符分隔文件中读取数据。如果您可以以制表符分隔格式获取数据,则可以使用以下方法:

import pandas as pd

df = pd.read_csv('RSTN', sep='\t', header = None)