我试图使用pthreads了解下面的线程池实现。当我在main中注释掉for循环时,程序停滞不前,在放入日志时,它似乎卡在了threadpool析构函数的join函数中。
我无法理解为什么会发生这种情况,是否有任何死锁情况发生?
这可能是天真的,但有人可以帮助我理解为什么会发生这种情况以及如何纠正这一点。
非常感谢!!!
#include <stdio.h>
#include <queue>
#include <unistd.h>
#include <pthread.h>
#include <malloc.h>
#include <stdlib.h>
// Base task for Tasks
// run() should be overloaded and expensive calculations done there
// showTask() is for debugging and can be deleted if not used
class Task {
public:
Task() {}
virtual ~Task() {}
virtual void run()=0;
virtual void showTask()=0;
};
// Wrapper around std::queue with some mutex protection
class WorkQueue {
public:
WorkQueue() {
// Initialize the mutex protecting the queue
pthread_mutex_init(&qmtx,0);
// wcond is a condition variable that's signaled
// when new work arrives
pthread_cond_init(&wcond, 0);
}
~WorkQueue() {
// Cleanup pthreads
pthread_mutex_destroy(&qmtx);
pthread_cond_destroy(&wcond);
}
// Retrieves the next task from the queue
Task *nextTask() {
// The return value
Task *nt = 0;
// Lock the queue mutex
pthread_mutex_lock(&qmtx);
// Check if there's work
if (finished && tasks.size() == 0) {
// If not return null (0)
nt = 0;
} else {
// Not finished, but there are no tasks, so wait for
// wcond to be signalled
if (tasks.size()==0) {
pthread_cond_wait(&wcond, &qmtx);
}
// get the next task
nt = tasks.front();
if(nt){
tasks.pop();
}
// For debugging
if (nt) nt->showTask();
}
// Unlock the mutex and return
pthread_mutex_unlock(&qmtx);
return nt;
}
// Add a task
void addTask(Task *nt) {
// Only add the task if the queue isn't marked finished
if (!finished) {
// Lock the queue
pthread_mutex_lock(&qmtx);
// Add the task
tasks.push(nt);
// signal there's new work
pthread_cond_signal(&wcond);
// Unlock the mutex
pthread_mutex_unlock(&qmtx);
}
}
// Mark the queue finished
void finish() {
pthread_mutex_lock(&qmtx);
finished = true;
// Signal the condition variable in case any threads are waiting
pthread_cond_signal(&wcond);
pthread_mutex_unlock(&qmtx);
}
// Check if there's work
bool hasWork() {
//printf("task queue size is %d\n",tasks.size());
return (tasks.size()>0);
}
private:
std::queue<Task*> tasks;
bool finished;
pthread_mutex_t qmtx;
pthread_cond_t wcond;
};
// Function that retrieves a task from a queue, runs it and deletes it
void *getWork(void* param) {
Task *mw = 0;
WorkQueue *wq = (WorkQueue*)param;
while (mw = wq->nextTask()) {
mw->run();
delete mw;
}
pthread_exit(NULL);
}
class ThreadPool {
public:
// Allocate a thread pool and set them to work trying to get tasks
ThreadPool(int n) : _numThreads(n) {
int rc;
printf("Creating a thread pool with %d threads\n", n);
threads = new pthread_t[n];
for (int i=0; i< n; ++i) {
rc = pthread_create(&(threads[i]), 0, getWork, &workQueue);
if (rc){
printf("ERROR; return code from pthread_create() is %d\n", rc);
exit(-1);
}
}
}
// Wait for the threads to finish, then delete them
~ThreadPool() {
workQueue.finish();
//waitForCompletion();
for (int i=0; i<_numThreads; ++i) {
pthread_join(threads[i], 0);
}
delete [] threads;
}
// Add a task
void addTask(Task *nt) {
workQueue.addTask(nt);
}
// Tell the tasks to finish and return
void finish() {
workQueue.finish();
}
// Checks if there is work to do
bool hasWork() {
return workQueue.hasWork();
}
private:
pthread_t * threads;
int _numThreads;
WorkQueue workQueue;
};
// stdout is a shared resource, so protected it with a mutex
static pthread_mutex_t console_mutex = PTHREAD_MUTEX_INITIALIZER;
// Debugging function
void showTask(int n) {
pthread_mutex_lock(&console_mutex);
pthread_mutex_unlock(&console_mutex);
}
// Task to compute fibonacci numbers
// It's more efficient to use an iterative algorithm, but
// the recursive algorithm takes longer and is more interesting
// than sleeping for X seconds to show parrallelism
class FibTask : public Task {
public:
FibTask(int n) : Task(), _n(n) {}
~FibTask() {
// Debug prints
pthread_mutex_lock(&console_mutex);
printf("tid(%d) - fibd(%d) being deleted\n", pthread_self(), _n);
pthread_mutex_unlock(&console_mutex);
}
virtual void run() {
// Note: it's important that this isn't contained in the console mutex lock
long long val = innerFib(_n);
// Show results
pthread_mutex_lock(&console_mutex);
printf("Fibd %d = %lld\n",_n, val);
pthread_mutex_unlock(&console_mutex);
// The following won't work in parrallel:
// pthread_mutex_lock(&console_mutex);
// printf("Fibd %d = %lld\n",_n, innerFib(_n));
// pthread_mutex_unlock(&console_mutex);
}
virtual void showTask() {
// More debug printing
pthread_mutex_lock(&console_mutex);
printf("thread %d computing fibonacci %d\n", pthread_self(), _n);
pthread_mutex_unlock(&console_mutex);
}
private:
// Slow computation of fibonacci sequence
// To make things interesting, and perhaps imporove load balancing, these
// inner computations could be added to the task queue
// Ideally set a lower limit on when that's done
// (i.e. don't create a task for fib(2)) because thread overhead makes it
// not worth it
long long innerFib(long long n) {
if (n<=1) { return 1; }
return innerFib(n-1) + innerFib(n-2);
}
long long _n;
};
int main(int argc, char *argv[])
{
// Create a thread pool
ThreadPool *tp = new ThreadPool(10);
// Create work for it
/*for (int i=0;i<100; ++i) {
int rv = rand() % 40 + 1;
showTask(rv);
tp->addTask(new FibTask(rv));
}*/
delete tp;
printf("\n\n\n\n\nDone with all work!\n");
}
答案 0 :(得分:4)
设计或多或少是好的,但在实现方面它包含了一些有点过于复杂的东西,可能会引入不稳定性。我猜你在注释掉for循环时会编译死锁,因为你应该在pthread_cond_broadcast
方法中使用pthread_cond_signal
而不是WorkQueue::finish()
。
注意:我通常通过将NUM_THREADS个NULL项放入工作队列来实现线程池终止,并且我设置finished
标志只是为了能够检查addTask()
方法中的某些内容,因为{{1}之后我通常不会添加新任务,而是从finish()
返回false,有时我断言。
另一个注意事项:最好将线程封装到类中,这有几个好处,并且可以更容易地对多个平台进行扩展。
我可能还有其他错误,因为我没有执行你的程序,只是浏览了你的代码。
编辑:这是一个返工版本,我对您的代码进行了一些修改,但我不保证它是有效的。手指交叉......: - )addTask()
答案 1 :(得分:0)
我认为你在那里遇到了竞争条件......
当你删除for循环时,一旦创建了池就会被破坏,所以线程没有时间开始在队列上等待。试着在那里睡觉,你会看到。
我实现了一个在我们所有服务中广泛使用的线程池库,所以这里有一些建议:
pthread_cond_signal
只唤醒一个帖子,你必须使用pthread_cond_broadcast
如果你想要通知所有人,那就说,我再次建议坚持提升条件(@pasztorpisti得到了在这里,他有我的upvote)