我想用MapReduce和hadoop v.1.0.3(我在MacOS上)写自己的单词计数示例,但我不明白为什么它不起作用 分享我的代码:
主要
package org.myorg;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.MapWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.FileInputFormat;
import org.apache.hadoop.mapred.FileOutputFormat;
import org.apache.hadoop.mapred.JobClient;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.TextInputFormat;
import org.apache.hadoop.mapred.TextOutputFormat;
public class WordCount {
public static void main(String[] args) throws Exception {
JobConf conf = new JobConf(WordCount.class);
// set job name, mapper, combiner, and reducer classes
conf.setJobName("WordCount");
// set input and output formats
conf.setInputFormat(TextInputFormat.class);
conf.setOutputFormat(TextOutputFormat.class);
// set input and output paths
//FileInputFormat. setInputPaths(conf, new Path(input));
//FileOutputFormat.setOutputPath(conf, new Path(output));
FileOutputFormat.setCompressOutput(conf, false);
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);
conf.setMapperClass(org.myorg.Map.class);
conf.setReducerClass(org.myorg.Reduce.class);
String host = args[0];
String input = host + "/" + args[1];
String output = host + "/" + args[2];
// set input and output paths
FileInputFormat.addInputPath(conf, new Path(input));
FileOutputFormat.setOutputPath(conf, new Path(output));
JobClient j=new JobClient(conf);
(j.submitJob(conf)).waitForCompletion();
}
}
映射器:
package org.myorg;
import java.io.IOException;
import java.util.HashMap;
import java.util.StringTokenizer;
import java.util.TreeMap;
import java.util.Vector;
import java.util.Map.Entry;
import org.apache.hadoop.io.ArrayWritable;
import org.apache.hadoop.io.DoubleWritable;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.MapWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.io.Writable;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.Mapper;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapreduce.Mapper.Context;
public class Map extends MapReduceBase implements Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
@Override
public void map(LongWritable key, Text value,
OutputCollector<Text, IntWritable> output, Reporter reporter)
throws IOException {
MapWritable hs = new MapWritable();
String line = value.toString();
StringTokenizer tokenizer = new StringTokenizer(line);
while (tokenizer.hasMoreTokens()) {
word.set(tokenizer.nextToken());
//hs.put(word, one);
output.collect(word,one);
}
// TODO Auto-generated method stub
}
}
减速机:
package org.myorg;
import java.io.BufferedWriter;
import java.io.IOException;
import java.io.OutputStreamWriter;
import java.math.RoundingMode;
import java.net.URI;
import java.net.URISyntaxException;
import java.text.DecimalFormat;
import java.text.DecimalFormatSymbols;
import java.text.NumberFormat;
import java.text.ParseException;
import java.util.Iterator;
import java.util.Map;
import java.util.TreeMap;
import java.util.Map.Entry;
import java.util.Vector;
import org.apache.hadoop.fs.FileSystem;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.MapWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapred.JobConf;
import org.apache.hadoop.mapred.MapReduceBase;
import org.apache.hadoop.mapred.OutputCollector;
import org.apache.hadoop.mapred.Reducer;
import org.apache.hadoop.mapred.Reporter;
import org.apache.hadoop.mapreduce.Reducer.Context;
//public class Reduce extends MapReduceBase implements Reducer<Text, MapWritable, Text, Text> {
public class Reduce extends MapReduceBase implements Reducer<Text, IntWritable, Text, Text> {
public void reduce(Text key, Iterator<IntWritable> values, OutputCollector<Text, Text> output, Reporter reporter) throws IOException {
int sum = 0;
while (values.hasNext()) {
sum += values.next().get();
}
String host = "hdfs://localhost:54310/";
String tmp = host + "Temporany/output.txt";
FileSystem srcFS;
try {
srcFS = FileSystem.get(new URI(tmp), new JobConf());
srcFS.delete(new Path(tmp), true);
BufferedWriter wr = new BufferedWriter(new OutputStreamWriter(
srcFS.create(new Path(tmp))));
wr.write(key.toString() + ":" + sum);
wr.close();
srcFS.close();
} catch (URISyntaxException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
// context.write(key, new IntWritable(sum));
}
}
作业开始并以无错误结束,但未写入输出文件。 我用这个命令用Hadoop启动jar:
./Hadoop jar /Users/User/Desktop/hadoop/wordcount.jar hdfs://localhost:54310 /In/testo.txt /Out/wordcount17
这是输出:
2014-03-03 17:56:22.063 java[6365:1203] Unable to load realm info from SCDynamicStore
14/03/03 17:56:22 WARN mapred.JobClient: Use GenericOptionsParser for parsing the arguments. Applications should implement Tool for the same.
14/03/03 17:56:23 WARN util.NativeCodeLoader: Unable to load native-hadoop library for your platform... using builtin-java classes where applicable
14/03/03 17:56:23 WARN snappy.LoadSnappy: Snappy native library not loaded
14/03/03 17:56:23 INFO mapred.FileInputFormat: Total input paths to process : 1
我认为问题是“无法加载native-hadoop库”但对其他Jar工作正常。
答案 0 :(得分:2)
问:作业开始和结束没有错误但是没有写输出文件??
Ans:我不确定该工作是否成功结束没有错误。
问题:
作业配置:
conf.setOutputKeyClass(Text.class);
conf.setOutputValueClass(IntWritable.class);
setOutputKeyClass()和setOutputValueClass()方法控制 map和reduce函数的输出类型,通常是 相同。如果它们不同,那么地图 可以使用setMapOutputKeyClass()和方法设置输出类型 setMapOutputValueClass()。
您的案例中的输出类是:
Map key : Text
Map Value : IntWritable
Reduce key : Text
Reduce Value : Text
这将导致Type mismatch exception
我不确定您为何使用hdfs API将输出写入文件?
应该使用output.collect(key,value)
。
如果有多个reducer,您是否正在处理同时写入操作? 我想知道context.write在旧的apis中做了什么(它的注释)?
您可以使用以下内容获取更多信息
调试map-reduce作业:
问。差异b / w SubmitJob()&amp;&amp; waitForCompletion()?
Ans:SubmitJob():提交作业并结束。
waitForCompletion():提交作业并在控制台上打印作业的状态。 所以waitForCompletion()是SubmitJob()+作业状态更新,直到完成。
字数
请阅读
hadoop-examples-X.X.X.jar
。$HADOOP_HOME/src/expalmes/
获取源代码。** $ HADOOP_HOME = hadoop安装文件夹