我想编写一个用于活动识别的滑动窗口算法。
训练数据<1xN&gt;所以我想我只需要(window_size=3
)window_size
数据并对其进行训练。我后来也想在矩阵上使用这个算法
。
我是matlab的新手,所以我需要有关如何正确实现这一点的任何建议/指示。
答案 0 :(得分:10)
答案简短:
%# nx = length(x)
%# nwind = window_size
idx = bsxfun(@plus, (1:nwind)', 1+(0:(fix(nx/nwind)-1))*nwind)-1;
idx
将是一个大小 nwind-by-K 的矩阵,其中 K 是滑动窗口的数量(即每列包含一个索引)滑动窗口)。
请注意,在上面的代码中,如果最后一个窗口的长度小于所需的长度,则将其删除。滑动窗也是不重叠的。
举例说明:
%# lets create a sin signal
t = linspace(0,1,200);
x = sin(2*pi*5*t);
%# compute indices
nx = length(x);
nwind = 8;
idx = bsxfun(@plus, (1:nwind)', 1+(0:(fix(nx/nwind)-1))*nwind)-1;
%'# loop over sliding windows
for k=1:size(idx,2)
slidingWindow = x( idx(:,k) );
%# do something with it ..
end
%# or more concisely as
slidingWindows = x(idx);
修改强>
对于重叠窗口,请:
noverlap = number of overlapping elements
然后上面简单地改为:
idx = bsxfun(@plus, (1:nwind)', 1+(0:(fix((nx-noverlap)/(nwind-noverlap))-1))*(nwind-noverlap))-1;
显示结果的示例:
>> nx = 100; nwind = 10; noverlap = 2;
>> idx = bsxfun(@plus, (1:nwind)', 1+(0:(fix((nx-noverlap)/(nwind-noverlap))-1))*(nwind-noverlap))-1
idx =
1 9 17 25 33 41 49 57 65 73 81 89
2 10 18 26 34 42 50 58 66 74 82 90
3 11 19 27 35 43 51 59 67 75 83 91
4 12 20 28 36 44 52 60 68 76 84 92
5 13 21 29 37 45 53 61 69 77 85 93
6 14 22 30 38 46 54 62 70 78 86 94
7 15 23 31 39 47 55 63 71 79 87 95
8 16 24 32 40 48 56 64 72 80 88 96
9 17 25 33 41 49 57 65 73 81 89 97
10 18 26 34 42 50 58 66 74 82 90 98