将元素匹配到总和列表

时间:2014-02-21 03:40:42

标签: javascript algorithm discrete-mathematics constraint-programming subset-sum

如果我有一个数组数组和一个总和数组元素的总和列表,那么用于确定总和中包含哪些元素的最有效方法(或者至少不是强力黑客)是什么? / p>

简化示例可能如下所示:

array = [6,5,7,8,6,12,16] sums = [14,24,22]

我想知道:

14包括8,6

24包括5,7,12

22包括6,16

function matchElements(arr, sums) {
    var testArr;
    function getSumHash() {
        var hash = {},
            i;
        for (i = 0; i < sums.length; i++) {
            hash[sums[i]] = [];
        }
        return hash;
    }
    sums = getSumHash();
    // I don't have a good sense of where to start on what goes here...
    return sumHash;
}

var totals = matchElements([6, 5, 7, 8, 6, 12, 16], [14,24,22]),
    total;

for (total in totals) {
   console.log(total + "includes", totals[total])
}

http://jsfiddle.net/tTMvP/

我知道总会有至少一个正确的答案,只有我才能检查数字,我不需要将索引配对有重复项,只需要与总数相关的值。是否有解决此类问题的既定功能?

这只是一个javascript问题,因为这是我正在编写解决方案的语言,这更像是通过Javascript过滤的一般数学相关问题。如果这不是合适的论坛,我欢迎重定向到相应的堆栈交换站点。

3 个答案:

答案 0 :(得分:2)

好的,诅咒我,这是我的抨击,改进欢迎:)

我认为这是Bin Packing Problemknapsack problem

的Javascript

常规Power Set功能

function powerSet(array) {
    var lastElement,
        sets;

    if (!array.length) {
        sets = [[]];
    } else {
        lastElement = array.pop();
        sets = powerSet(array).reduce(function (previous, element) {
            previous.push(element);
            element = element.slice();
            element.push(lastElement);
            previous.push(element);

            return previous;
        }, []);
    }

    return sets;
}

减少功率集中的副本,即我们不希望[6,8]和[8,6]它们是相同的

function reducer1(set) {
    set.sort(function (a, b) {
        return a - b;
    });

    return this[set] ? false : (this[set] = true);
}

主要功能,获取垃圾箱匹配,删除使用过的物品,冲洗并重复

function calc(bins, items) {
    var result = {
            unfilled: bins.slice(),
            unused: items.slice()
        },
        match,
        bin,
        index;

    function reducer2(prev, set) {
        if (!prev) {
            set.length && set.reduce(function (acc, cur) {
                acc += cur;

                return acc;
            }, 0) === bin && (prev = set);
        }

        return prev;
    }

    function remove(item) {
        result.unused.splice(result.unused.indexOf(item), 1);
    }

    for (index = result.unfilled.length - 1; index >= 0; index -= 1) {
        bin = result.unfilled[index];
        match = powerSet(result.unused.slice()).filter(reducer1, {}).reduce(reducer2, '');
        if (match) {
            result[bin] = match;
            match.forEach(remove);
            result.unfilled.splice(result.unfilled.lastIndexOf(bin), 1);
        }
    }

    return result;
}

这些是我们的物品和需要打包的垃圾箱

var array = [6, 5, 7, 8, 6, 12, 16],
    sums = [14, 24, 22];

console.log(JSON.stringify(calc(sums, array)));

<强>输出

{"14":[6,8],"22":[6,16],"24":[5,7,12],"unfilled":[],"unused":[]} 

jsfiddle

答案 1 :(得分:2)

显示如何在约束编程系统(此处为MiniZinc)中对其进行编码可能具有指导意义。

这是完整的模型。它也可以在http://www.hakank.org/minizinc/matching_sums.mzn

获得
int: n;
int: num_sums;
array[1..n] of int: nums; % the numbers
array[1..num_sums] of int: sums; % the sums

% decision variables

% 0/1 matrix where 1 indicates that number nums[j] is used
% for the sum sums[i]. 
array[1..num_sums, 1..n] of var 0..1: x;

solve satisfy;

% Get the numbers to use for each sum
constraint
   forall(i in 1..num_sums) (
      sum([x[i,j]*nums[j] | j in 1..n]) = sums[i]
   )
;

output 
[
   show(sums[i]) ++ ": " ++ show([nums[j] | j in 1..n where fix(x[i,j])=1]) ++ "\n" 
    | i in 1..num_sums
];

%% Data
n = 6;
num_sums = 3;
nums = [5, 7, 8, 6, 12, 16];
sums = [14, 24, 22];

矩阵“x”是有趣的部分,如果数字“nums [j]”用于数字“sums [i]”的总和,则x [i,j]为1(真)。

对于这个特殊问题,有16个解决方案:

....
14: [8, 6]
24: [8, 16]
22: [6, 16]
----------
14: [6, 8]
24: [6, 5, 7, 6]
22: [6, 16]
----------
14: [6, 8]
4: [5, 7, 12]
22: [6, 16]
----------
14: [6, 8]
24: [6, 6, 12]
22: [6, 16]
----------
14: [6, 8]
24: [8, 16]
22: [6, 16]
----------
...

这些不是截然不同的解决方案,因为有两个6。只有一个6有2个解决方案:

14: [8, 6]
24: [5, 7, 12]
22: [6, 16]
----------
14: [8, 6]
24: [8, 16]
22: [6, 16]
----------

旁白:当我第一次阅读问题时,我不确定目标是否最小化(或最大化)使用的数字。只需一些额外的变量和约束,模型也可用于此。以下是使用最少数量的解决方案:

s: {6, 8, 16}
14: [8, 6]
24: [8, 16]
22: [6, 16]
Not used: {5, 7, 12}

相反,使用的最大数字数(此处所有数字自6开始使用时仅在“s”中计算一次):

s: {5, 6, 7, 8, 12, 16}
14: [8, 6]
24: [5, 7, 12]
22: [6, 16]
Not used: {}

扩展的MiniZinc模型可在此处获取:http://www.hakank.org/minizinc/matching_sums2.mzn

(Aside2:评论中提到了xkcd餐厅的问题。这是针对该问题的更通用的解决方案:http://www.hakank.org/minizinc/xkcd.mzn。它是当前匹配问题的变体,主要区别在于菜肴可以计算得更多不止一次,不只是0..1,因为这个匹配问题。)

答案 2 :(得分:1)

子集和的问题是np-complete,但是有一个伪多项式时间动态规划解决方案: -

1.calculate the max element of the sums array
2. Solve it using knapsack analogy
3. consider knapsack capacity = sums[max]
4. items as arr[i] with weight and cost same.
5. maximize profit
6. Check whether a sum can be formed from sums using CostMatrix[sums[i]][arr.length-1]==sums[i]

这是一个相同的java实现: -

public class SubSetSum {
    static int[][] costs;

    public static void calSets(int target,int[] arr) {

        costs = new int[arr.length][target+1];
        for(int j=0;j<=target;j++) {
            if(arr[0]<=j) {

                costs[0][j] = arr[0]; 
            }
        }
        for(int i=1;i<arr.length;i++) {

            for(int j=0;j<=target;j++) {
                costs[i][j] = costs[i-1][j];
                if(arr[i]<=j) {
                    costs[i][j] = Math.max(costs[i][j],costs[i-1][j-arr[i]]+arr[i]);
                }
            }

        }

       // System.out.println(costs[arr.length-1][target]);
       /*if(costs[arr.length-1][target]==target) {
           //System.out.println("Sets :");
           //printSets(arr,arr.length-1,target,"");
       } 

       else System.out.println("No such Set found");*/

    } 

    public static void getSubSetSums(int[] arr,int[] sums) {

        int max = -1;
        for(int i=0;i<sums.length;i++) {
            if(max<sums[i]) {
                max = sums[i];
            }
        }

        calSets(max, arr);

        for(int i=0;i<sums.length;i++) {
            if(costs[arr.length-1][sums[i]]==sums[i]) {
                System.out.println("subset forming "+sums[i]+":");
                printSets(arr,arr.length-1,sums[i],"");
            }
        }




    }

    public static void printSets(int[] arr,int n,int w,String result) {


        if(w==0) {
            System.out.println(result);
            return;
        }

        if(n==0) {
           System.out.println(result+","+arr[0]);
            return; 
        }

        if(costs[n-1][w]==costs[n][w]) {
            printSets(arr,n-1,w,new String(result));
        }
        if(arr[n]<=w&&(costs[n-1][w-arr[n]]+arr[n])==costs[n][w]) {
            printSets(arr,n-1,w-arr[n],result+","+arr[n]);
        }
    }

    public static void main(String[] args) {
        int[] arr = {6, 5, 7, 8, 6, 12, 16};
        int[] sums = {14, 24, 22};        
        getSubSetSums(arr, sums);

    }
}