我有一个对象列表(无向边),如下所示:
pairs = [
pair:["a2", "a5"],
pair:["a3", "a6"],
pair:["a4", "a5"],
pair:["a7", "a9"]
];
我需要在不同的组中找到所有组件(连接的节点)。所以从我需要得到的配对:
groups = [
group1: ["a2", "a5", "a4"],
group2: ["a3", "a6"],
group3: ["a7", "a9"]
];
我实际上在这里阅读了一些答案,并用Google搜索了这个,这就是我如何学习这个被称为“在图中查找连接的组件”,但是,找不到任何示例代码。我在Node.js上使用JavaScript,但任何其他语言的样本都会非常有用。谢谢。
答案 0 :(得分:11)
这可以使用广度优先搜索来解决。
这个想法是通过跳转到相邻的顶点来遍历源顶点的所有可到达顶点。首先访问源顶点旁边的顶点,然后是2跳的顶点,等等。
由于使用了图表表示,这里的代码效率不高,这是一个边缘列表。要获得更好的性能,您可能需要使用邻接列表。
以下是JavaScript中的一些工作代码。我用node.js
来运行它:
// Breadth First Search function
// v is the source vertex
// all_pairs is the input array, which contains length 2 arrays
// visited is a dictionary for keeping track of whether a node is visited
var bfs = function(v, all_pairs, visited) {
var q = [];
var current_group = [];
var i, nextVertex, pair;
var length_all_pairs = all_pairs.length;
q.push(v);
while (q.length > 0) {
v = q.shift();
if (!visited[v]) {
visited[v] = true;
current_group.push(v);
// go through the input array to find vertices that are
// directly adjacent to the current vertex, and put them
// onto the queue
for (i = 0; i < length_all_pairs; i += 1) {
pair = all_pairs[i];
if (pair[0] === v && !visited[pair[1]]) {
q.push(pair[1]);
} else if (pair[1] === v && !visited[pair[0]]) {
q.push(pair[0]);
}
}
}
}
// return everything in the current "group"
return current_group;
};
var pairs = [
["a2", "a5"],
["a3", "a6"],
["a4", "a5"],
["a7", "a9"]
];
var groups = [];
var i, k, length, u, v, src, current_pair;
var visited = {};
// main loop - find any unvisited vertex from the input array and
// treat it as the source, then perform a breadth first search from
// it. All vertices visited from this search belong to the same group
for (i = 0, length = pairs.length; i < length; i += 1) {
current_pair = pairs[i];
u = current_pair[0];
v = current_pair[1];
src = null;
if (!visited[u]) {
src = u;
} else if (!visited[v]) {
src = v;
}
if (src) {
// there is an unvisited vertex in this pair.
// perform a breadth first search, and push the resulting
// group onto the list of all groups
groups.push(bfs(src, pairs, visited));
}
}
// show groups
console.log(groups);
更新:我已更新我的答案,演示如何将边缘列表转换为邻接列表。代码被评论,应该很好地说明这个概念。修改宽度优先搜索功能以使用邻接列表,以及另一个略微修改(关于将顶点标记为已访问)。
// Converts an edgelist to an adjacency list representation
// In this program, we use a dictionary as an adjacency list,
// where each key is a vertex, and each value is a list of all
// vertices adjacent to that vertex
var convert_edgelist_to_adjlist = function(edgelist) {
var adjlist = {};
var i, len, pair, u, v;
for (i = 0, len = edgelist.length; i < len; i += 1) {
pair = edgelist[i];
u = pair[0];
v = pair[1];
if (adjlist[u]) {
// append vertex v to edgelist of vertex u
adjlist[u].push(v);
} else {
// vertex u is not in adjlist, create new adjacency list for it
adjlist[u] = [v];
}
if (adjlist[v]) {
adjlist[v].push(u);
} else {
adjlist[v] = [u];
}
}
return adjlist;
};
// Breadth First Search using adjacency list
var bfs = function(v, adjlist, visited) {
var q = [];
var current_group = [];
var i, len, adjV, nextVertex;
q.push(v);
visited[v] = true;
while (q.length > 0) {
v = q.shift();
current_group.push(v);
// Go through adjacency list of vertex v, and push any unvisited
// vertex onto the queue.
// This is more efficient than our earlier approach of going
// through an edge list.
adjV = adjlist[v];
for (i = 0, len = adjV.length; i < len; i += 1) {
nextVertex = adjV[i];
if (!visited[nextVertex]) {
q.push(nextVertex);
visited[nextVertex] = true;
}
}
}
return current_group;
};
var pairs = [
["a2", "a5"],
["a3", "a6"],
["a4", "a5"],
["a7", "a9"]
];
var groups = [];
var visited = {};
var v;
// this should look like:
// {
// "a2": ["a5"],
// "a3": ["a6"],
// "a4": ["a5"],
// "a5": ["a2", "a4"],
// "a6": ["a3"],
// "a7": ["a9"],
// "a9": ["a7"]
// }
var adjlist = convert_edgelist_to_adjlist(pairs);
for (v in adjlist) {
if (adjlist.hasOwnProperty(v) && !visited[v]) {
groups.push(bfs(v, adjlist, visited));
}
}
console.log(groups);
答案 1 :(得分:5)
使用Disjoint Set Forest算法最佳地解决您要解决的任务。
基本上它旨在以最佳方式解决您描述的问题。
root(v)
。在整个算法中,每个这样的集合将被视为种植树。因此,我们将root(v)
与树的根关联起来。所以我们假设root(v)
返回一个顶点索引。parent[v] = -1
,您使用v
启动算法,因为所有顶点最初都在他们自己的树中而您没有父母rank
。我们将所有等级初始化为1s 这是一个伪代码:
parent[v] = -1 for v in Vertices
rank[v] = 1 for v in Vertices
root (v):
processed = []
while parent[v] != -1
processed << v
v = parent[v]
for vertex : processed
parent = v // optimisation: here we move the assoc. trees to be directly connected the root
return v
join (v1, v2):
if rank[v1] < rank[v2]:
parent[v1] = v2
if rank[v1] > rank[v2]:
parent[v2] = v1
parent[v2] = v1
rank[v1]++
merge_trees (v1, v2)
root1 = root(v1)
root2 = root(v2)
if root1 == root2:
// already in same tree nothing else to be done here
return true
else
// join trees
join (v1, v2)
return false
main:
numberTrees = size(Vertives)
for edge: edges
if merge_trees(edge.begin, edge.end):
numberTrees--
print numberTrees // this is the number you are interested in.
注意如果您在性能方面没有太多参与,您可以省略排名。没有它,你的算法可能会运行得更慢,但也许你更容易理解和维护。在这种情况下,您可以join
任意方向的顶点。我应该警告你,然后会存在会触发你的算法运行速度较慢的场景。
答案 2 :(得分:2)
在特定的示例中,您没有节点数,甚至可能难以遍历图表,因此首先我们将获得“图表”
// It will return an object like Vertices{node: EdgesTo{node,node}, node:...}
function toGraph(arr) {
var graph = {}; // this will hold the node "IDs"
for (var i = 0; i < arr.length; i++) {
// "create node" if the it's not added in the graph yet
graph[arr[i][0]] = graph[arr[i][0]] || {};
graph[arr[i][1]] = graph[arr[i][1]] || {};
// add bidirectional "edges" to the "vertices"
// Yes, we set the value to null, but what's important is to add the key.
graph[arr[i][0]][arr[i][1]] = null;
graph[arr[i][1]][arr[i][0]] = null;
}
return graph;
}
我将使用DFS做一个例子:
// to be called after getting the result from toGraph(arr)
function getSubGraphs(graph) {
var subGraphs = []; // array of connected vertices
var visited = {};
for (var i in graph) { // for every node...
var subGraph = dfs(graph, i, visited); // ... we call dfs
if (subGraph != null) // if vertex is not added yet in another graph
subGraphs.push(subGraph);
}
return subGraphs;
}
// it will return an array of all connected nodes in a subgraph
function dfs(graph, node, visited) {
if (visited[node]) return null; // node is already visited, get out of here.
var subGraph = [];
visited[node] = true;
subGraph.push(node);
for (var i in graph[node]) {
var result = dfs(graph, i, visited);
if (result == null) continue;
subGraph = subGraph.concat(result);
}
return subGraph;
}
你最终会像getSubGraphs(toGraph(myArray));
那样称呼它并随意做任何事情。