Java使用BufferedImage转换图像的灰度和棕褐色版本

时间:2014-02-20 06:21:48

标签: java image-processing

我想读取图像并转换并输出原始图像,灰度版本和棕褐色版本。我在转换时遇到问题,对BufferedImage不太熟悉,特别是遇到getRGB和setRGB方法的问题。到目前为止我有这个

import java.awt.Color;
import java.awt.Graphics2D;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.net.URL;

import javax.imageio.IIOImage;
import javax.imageio.ImageIO;
import javax.imageio.ImageWriteParam;
import javax.imageio.ImageWriter;
import javax.imageio.plugins.jpeg.JPEGImageWriteParam;
import javax.imageio.stream.ImageOutputStream;

public class ChangeColor{
  static BufferedImage readImage( String Pic ) throws Exception {

    BufferedImage image = ImageIO.read( new File("Pic.jpg") );
    return( image );
  }

  public static void saveImage( BufferedImage img, File file ) throws IOException {

        ImageWriter      writer = null;
        java.util.Iterator iter = ImageIO.getImageWritersByFormatName("jpg");

        if( iter.hasNext() ){
            writer = (ImageWriter)iter.next();
        }

        ImageOutputStream ios = ImageIO.createImageOutputStream( file );
        writer.setOutput(ios);

        ImageWriteParam param = new JPEGImageWriteParam( java.util.Locale.getDefault() );
        param.setCompressionMode(ImageWriteParam.MODE_EXPLICIT) ;
        param.setCompressionQuality(0.98f);

        writer.write(null, new IIOImage( img, null, null ), param);

    }

  public static BufferedImage color2gray( BufferedImage inImage ) {

    int            width    = inImage.getWidth();
    int            height   = inImage.getHeight();
    BufferedImage  outImage = new BufferedImage( width, height, BufferedImage.TYPE_3BYTE_BGR );

    for(int i=0; i<height; i++){
        for(int j=0; j<width; j++){
           Color c = new Color(image.getRGB(j, i));
           int red = (int)(c.getRed() * 0.2126);
           int green = (int)(c.getGreen() * 0.7152);
           int blue = (int)(c.getBlue() *0.0722);
           Color newColor = new Color(red+green+blue,
           red+green+blue,red+green+blue);
           image.setRGB(j,i,newColor.getRGB());
           }
    }

    return( outImage );
  }

  public static BufferedImage color2sepia( BufferedImage inImage ) {

    int            width    = inImage.getWidth();
    int            height   = inImage.getHeight();
    BufferedImage  outImage = new BufferedImage( width, height, BufferedImage.TYPE_3BYTE_BGR );
    for(int i=0; i<height; i++){
        for(int j=0; j<width; j++){
           Color c = new Color(image.getRGB(j, i));
           int red = (int)(c.getRed());
           int green = (int)(c.getGreen());
           int blue = (int)(c.getBlue());
           Color newColor = new Color(red* .393)+(green*.769)+(blue* .189),
           (red* .349)+(green*.686)+(blue* .168),(red* .272)+(green*.534)+(blue* .131);
           image.setRGB(j,i,newColor.getRGB());
           }
    }
    return( outImage );
  }



  public static void main(String[] args) throws Exception {

    BufferedImage colorImage, grayImage, sepiaImage;

    if (args.length != 1)
        System.out.println( "" );
    else
    {
        colorImage = readImage  ( args[0] );
    grayImage  = color2gray ( colorImage );
    sepiaImage = color2sepia( colorImage );

    saveImage( grayImage,  new File( "greyPic.jpg" + args[0] ) );
    saveImage( sepiaImage, new File( "sepiaPic.jpg"+ args[0] ) );
    }
  }

}

这是输出应该是什么样子的图像:

enter image description here 谢谢。

3 个答案:

答案 0 :(得分:8)

灰度比较容易,棕褐色不是那么多。我从网上偷走了算法...

Convert

import java.awt.EventQueue;
import java.awt.GridBagLayout;
import java.awt.color.ColorSpace;
import java.awt.image.BufferedImage;
import java.awt.image.ColorConvertOp;
import java.awt.image.WritableRaster;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
import javax.swing.ImageIcon;
import javax.swing.JLabel;
import javax.swing.JOptionPane;
import javax.swing.JPanel;
import javax.swing.UIManager;
import javax.swing.UnsupportedLookAndFeelException;

public class ColorAlteration {

    public static void main(String[] args) {
        EventQueue.invokeLater(new Runnable() {
            @Override
            public void run() {
                try {
                    UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
                } catch (ClassNotFoundException | InstantiationException | IllegalAccessException | UnsupportedLookAndFeelException ex) {
                }
                try {
                    BufferedImage master = ImageIO.read(new File("C:\\hold\\thumbnails\\_cg_836___Tilting_Windmills___by_Serena_Clearwater.png"));
                    BufferedImage gray = toGrayScale(master);
                    BufferedImage sepia = toSepia(master, 80);

                    JPanel panel = new JPanel(new GridBagLayout());
                    panel.add(new JLabel(new ImageIcon(master)));
                    panel.add(new JLabel(new ImageIcon(gray)));
                    panel.add(new JLabel(new ImageIcon(sepia)));

                    JOptionPane.showMessageDialog(null, panel);

                } catch (IOException ex) {
                    ex.printStackTrace();
                }
            }
        });
    }

    public static BufferedImage toGrayScale(BufferedImage master) {
        BufferedImage gray = new BufferedImage(master.getWidth(), master.getHeight(), BufferedImage.TYPE_INT_ARGB);

        // Automatic converstion....
        ColorConvertOp op = new ColorConvertOp(ColorSpace.getInstance(ColorSpace.CS_GRAY), null);
        op.filter(master, gray);

        return gray;
    }

    public static BufferedImage toSepia(BufferedImage img, int sepiaIntensity) {

        BufferedImage sepia = new BufferedImage(img.getWidth(), img.getHeight(), BufferedImage.TYPE_INT_RGB);
        // Play around with this.  20 works well and was recommended
        //   by another developer. 0 produces black/white image
        int sepiaDepth = 20;

        int w = img.getWidth();
        int h = img.getHeight();

        WritableRaster raster = sepia.getRaster();

        // We need 3 integers (for R,G,B color values) per pixel.
        int[] pixels = new int[w * h * 3];
        img.getRaster().getPixels(0, 0, w, h, pixels);

        //  Process 3 ints at a time for each pixel.  Each pixel has 3 RGB
        //    colors in array
        for (int i = 0; i < pixels.length; i += 3) {
            int r = pixels[i];
            int g = pixels[i + 1];
            int b = pixels[i + 2];

            int gry = (r + g + b) / 3;
            r = g = b = gry;
            r = r + (sepiaDepth * 2);
            g = g + sepiaDepth;

            if (r > 255) {
                r = 255;
            }
            if (g > 255) {
                g = 255;
            }
            if (b > 255) {
                b = 255;
            }

            // Darken blue color to increase sepia effect
            b -= sepiaIntensity;

            // normalize if out of bounds
            if (b < 0) {
                b = 0;
            }
            if (b > 255) {
                b = 255;
            }

            pixels[i] = r;
            pixels[i + 1] = g;
            pixels[i + 2] = b;
        }
        raster.setPixels(0, 0, w, h, pixels);

        return sepia;
    }
}

您可以找到sepia算法的原始发布here

因为我很顽固......我改变了棕褐色算法来处理基于alpha的图像......

public static BufferedImage toSepia(BufferedImage img, int sepiaIntensity) {

    BufferedImage sepia = new BufferedImage(img.getWidth(), img.getHeight(), BufferedImage.TYPE_INT_ARGB);
    // Play around with this.  20 works well and was recommended
    //   by another developer. 0 produces black/white image
    int sepiaDepth = 20;

    int w = img.getWidth();
    int h = img.getHeight();

    WritableRaster raster = sepia.getRaster();

    // We need 3 integers (for R,G,B color values) per pixel.
    int[] pixels = new int[w * h * 3];
    img.getRaster().getPixels(0, 0, w, h, pixels);

    for (int x = 0; x < img.getWidth(); x++) {
        for (int y = 0; y < img.getHeight(); y++) {

            int rgb = img.getRGB(x, y);
            Color color = new Color(rgb, true);
            int r = color.getRed();
            int g = color.getGreen();
            int b = color.getBlue();
            int gry = (r + g + b) / 3;

            r = g = b = gry;
            r = r + (sepiaDepth * 2);
            g = g + sepiaDepth;

            if (r > 255) {
                r = 255;
            }
            if (g > 255) {
                g = 255;
            }
            if (b > 255) {
                b = 255;
            }

            // Darken blue color to increase sepia effect
            b -= sepiaIntensity;

            // normalize if out of bounds
            if (b < 0) {
                b = 0;
            }
            if (b > 255) {
                b = 255;
            }

            color = new Color(r, g, b, color.getAlpha());
            sepia.setRGB(x, y, color.getRGB());

        }
    }

    return sepia;
}

答案 1 :(得分:2)

我使用@@ MadProgrammer代码编写此代码。我认为它更有效率。

  1. 使用图像的栅格数据而不是访问图像的每个字节。虽然它似乎将数据复制到像素数组中,但它并未在程序中使用。

  2. 每次调用getRGB + getWidth()+ getHeight()+ getRed(),getGreen()+ getBlue()。

  3. 将颜色直接写入图像,我认为一旦使用setRGB编写颜色就会成为瓶颈,您将失去图形处理器的好处。 (我在某处阅读,但现在找不到链接。)

  4. 将颜色转换回Color对象并使用getRGB()将其恢复。

  5. 我所做的只是使用逐位运算符,它非常快,然后在我完成它之后复制了像素数组。函数调用很昂贵,我避免使用它们。

    但是,感谢@MadProgrammer的想法。

    public static BufferedImage toSepia(BufferedImage image, int sepiaIntensity) {
    
        int width = image.getWidth();
        int height = image.getHeight();
        int sepiaDepth = 20;
    
        int[] imagePixels = image.getRGB(0, 0, width, height, null, 0, width);
    
        for (int i = 0; i < imagePixels.length; i++) {
            int color = imagePixels[i];
    
            int r = (color >> 16) & 0xff;
            int g = (color >> 8) & 0xff;
            int b = (color) & 0xff;
            int gry = (r + g + b) / 3;
    
            r = g = b = gry;
            r = r + (sepiaDepth * 2);
            g = g + sepiaDepth;
    
            if (r > 255) {
                r = 255;
            }
            if (g > 255) {
                g = 255;
            }
            if (b > 255) {
                b = 255;
            }
    
            // Darken blue color to increase sepia effect
            b -= sepiaIntensity;
    
            // normalize if out of bounds
            if (b < 0) {
                b = 0;
            }
            if (b > 255) {
                b = 255;
            }
    
            imagePixels[i] = (color & 0xff000000) + (r << 16) + (g << 8) + b;
        }
    
        BufferedImage res = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB);
        res.setRGB(0, 0, width, height, imagePixels, 0, width);
        return res;
    }
    

答案 2 :(得分:1)

您可以为代码重用创建过滤器接口。

FilterApp

import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;

import javax.imageio.ImageIO;

public class FilterApp {
    public static ClassLoader loader = FilterApp.class.getClassLoader();
    public static String outputDir = "build";

    public static void main(String[] args) {
        try {
            BufferedImage srcImage = loadImage("lobster.jpg");
            File dir = new File(outputDir);

            if (!dir.exists()) {
                dir.mkdirs();
            }

            for (FilterType filter : FilterType.values()) {
                BufferedImage filteredImage = filter.applyFilter(srcImage);
                String filename = String.format("%s/lobster_%s", outputDir, filter.name().toLowerCase());
                writeImage(filteredImage, filename, "jpg");
            }
        } catch (IOException e) {
            e.printStackTrace();
        }
    }

    private static BufferedImage loadImage(String filename) throws IOException {
        return ImageIO.read(loader.getResourceAsStream("resources/" + filename));
    }

    private static void writeImage(BufferedImage image, String filename, String ext) throws IOException {
        ImageIO.write(image, ext, new File(filename + '.' + ext));
    }
}

过滤式

import java.awt.image.BufferedImage;

import filter.GreyscaleFilter;
import filter.ImageFilter;
import filter.InvertFilter;
import filter.SepiaFilter;

public enum FilterType {
    GREYSCALE(new GreyscaleFilter()),
    INVERT(new InvertFilter()),
    SEPIA_10(new SepiaFilter(10));

    private ImageFilter filter;

    public ImageFilter getFilter() { return filter; }

    public BufferedImage applyFilter(BufferedImage img) {
        return this.filter.apply(img);
    }

    private FilterType(ImageFilter filter) {
        this.filter = filter;
    }
}

的ImageFilter

package filter;

import java.awt.image.BufferedImage;

/** Common Interface for different filters. */ 
public interface ImageFilter {
    public BufferedImage apply(BufferedImage img);
}

GreyscaleFilter

package filter;

import java.awt.color.ColorSpace;
import java.awt.image.BufferedImage;
import java.awt.image.ColorConvertOp;

public class GreyscaleFilter implements ImageFilter {
    @Override
    public BufferedImage apply(BufferedImage img) {
        BufferedImage result = new BufferedImage(img.getWidth(), img.getHeight(), img.getType());
        ColorConvertOp op = new ColorConvertOp(ColorSpace.getInstance(ColorSpace.CS_GRAY), null);

        op.filter(img, result);

        return result;
    }
}

InvertFilter

package filter;

import java.awt.Color;
import java.awt.image.BufferedImage;

public class InvertFilter implements ImageFilter {
    @Override
    public BufferedImage apply(BufferedImage img) {
        BufferedImage result = new BufferedImage(img.getWidth(), img.getHeight(), img.getType());

        for (int x = 0; x < img.getWidth(); x++) {
            for (int y = 0; y < img.getHeight(); y++) {
                int rgb = img.getRGB(x, y);
                Color color = new Color(rgb, true);
                int r = 255 - color.getRed();
                int g = 255 - color.getGreen();
                int b = 255 - color.getBlue();

                color = new Color(r, g, b, color.getAlpha());
                result.setRGB(x, y, color.getRGB());
            }
        }

        return result;
    }
}

SepiaFilter

package filter;

import java.awt.Color;
import java.awt.image.BufferedImage;

// Algorithm obtained from http://stackoverflow.com/questions/21899824
public class SepiaFilter implements ImageFilter {
    private int intensity;

    public void setIntensity(int intensity) { this.intensity = intensity; }
    public int getIntensity() { return intensity; }

    public SepiaFilter(int intensity) {
        this.intensity = intensity;
    }

    @Override
    public BufferedImage apply(BufferedImage img) {
        BufferedImage result = new BufferedImage(img.getWidth(), img.getHeight(), img.getType());
        // Play around with this.
        // 20 works well and was recommended by another developer.
        // 0 produces black/white image
        int sepiaDepth = 20;

        int w = img.getWidth();
        int h = img.getHeight();

        // We need 3 integers (for R,G,B color values) per pixel.
        int[] pixels = new int[w * h * 3];
        img.getRaster().getPixels(0, 0, w, h, pixels);

        for (int x = 0; x < img.getWidth(); x++) {
            for (int y = 0; y < img.getHeight(); y++) {
                int rgb = img.getRGB(x, y);
                Color color = new Color(rgb, true);
                int r = color.getRed();
                int g = color.getGreen();
                int b = color.getBlue();
                int gry = (r + g + b) / 3;

                r = g = b = gry;
                r = r + (sepiaDepth * 2);
                g = g + sepiaDepth;

                if (r > 255) { r = 255; }
                if (g > 255) { g = 255; }
                if (b > 255) { b = 255; }

                // Darken blue color to increase sepia effect
                b -= this.intensity;

                // normalize if out of bounds
                if (b < 0)   { b = 0; }
                if (b > 255) { b = 255; }

                color = new Color(r, g, b, color.getAlpha());
                result.setRGB(x, y, color.getRGB());
            }
        }

        return result;
    }
}

输出

来源图片

enter image description here

生成图像

enter image description here enter image description here enter image description here