我想读取图像并转换并输出原始图像,灰度版本和棕褐色版本。我在转换时遇到问题,对BufferedImage不太熟悉,特别是遇到getRGB和setRGB方法的问题。到目前为止我有这个
import java.awt.Color;
import java.awt.Graphics2D;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import java.net.URL;
import javax.imageio.IIOImage;
import javax.imageio.ImageIO;
import javax.imageio.ImageWriteParam;
import javax.imageio.ImageWriter;
import javax.imageio.plugins.jpeg.JPEGImageWriteParam;
import javax.imageio.stream.ImageOutputStream;
public class ChangeColor{
static BufferedImage readImage( String Pic ) throws Exception {
BufferedImage image = ImageIO.read( new File("Pic.jpg") );
return( image );
}
public static void saveImage( BufferedImage img, File file ) throws IOException {
ImageWriter writer = null;
java.util.Iterator iter = ImageIO.getImageWritersByFormatName("jpg");
if( iter.hasNext() ){
writer = (ImageWriter)iter.next();
}
ImageOutputStream ios = ImageIO.createImageOutputStream( file );
writer.setOutput(ios);
ImageWriteParam param = new JPEGImageWriteParam( java.util.Locale.getDefault() );
param.setCompressionMode(ImageWriteParam.MODE_EXPLICIT) ;
param.setCompressionQuality(0.98f);
writer.write(null, new IIOImage( img, null, null ), param);
}
public static BufferedImage color2gray( BufferedImage inImage ) {
int width = inImage.getWidth();
int height = inImage.getHeight();
BufferedImage outImage = new BufferedImage( width, height, BufferedImage.TYPE_3BYTE_BGR );
for(int i=0; i<height; i++){
for(int j=0; j<width; j++){
Color c = new Color(image.getRGB(j, i));
int red = (int)(c.getRed() * 0.2126);
int green = (int)(c.getGreen() * 0.7152);
int blue = (int)(c.getBlue() *0.0722);
Color newColor = new Color(red+green+blue,
red+green+blue,red+green+blue);
image.setRGB(j,i,newColor.getRGB());
}
}
return( outImage );
}
public static BufferedImage color2sepia( BufferedImage inImage ) {
int width = inImage.getWidth();
int height = inImage.getHeight();
BufferedImage outImage = new BufferedImage( width, height, BufferedImage.TYPE_3BYTE_BGR );
for(int i=0; i<height; i++){
for(int j=0; j<width; j++){
Color c = new Color(image.getRGB(j, i));
int red = (int)(c.getRed());
int green = (int)(c.getGreen());
int blue = (int)(c.getBlue());
Color newColor = new Color(red* .393)+(green*.769)+(blue* .189),
(red* .349)+(green*.686)+(blue* .168),(red* .272)+(green*.534)+(blue* .131);
image.setRGB(j,i,newColor.getRGB());
}
}
return( outImage );
}
public static void main(String[] args) throws Exception {
BufferedImage colorImage, grayImage, sepiaImage;
if (args.length != 1)
System.out.println( "" );
else
{
colorImage = readImage ( args[0] );
grayImage = color2gray ( colorImage );
sepiaImage = color2sepia( colorImage );
saveImage( grayImage, new File( "greyPic.jpg" + args[0] ) );
saveImage( sepiaImage, new File( "sepiaPic.jpg"+ args[0] ) );
}
}
}
这是输出应该是什么样子的图像:
谢谢。
答案 0 :(得分:8)
灰度比较容易,棕褐色不是那么多。我从网上偷走了算法...
import java.awt.EventQueue;
import java.awt.GridBagLayout;
import java.awt.color.ColorSpace;
import java.awt.image.BufferedImage;
import java.awt.image.ColorConvertOp;
import java.awt.image.WritableRaster;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
import javax.swing.ImageIcon;
import javax.swing.JLabel;
import javax.swing.JOptionPane;
import javax.swing.JPanel;
import javax.swing.UIManager;
import javax.swing.UnsupportedLookAndFeelException;
public class ColorAlteration {
public static void main(String[] args) {
EventQueue.invokeLater(new Runnable() {
@Override
public void run() {
try {
UIManager.setLookAndFeel(UIManager.getSystemLookAndFeelClassName());
} catch (ClassNotFoundException | InstantiationException | IllegalAccessException | UnsupportedLookAndFeelException ex) {
}
try {
BufferedImage master = ImageIO.read(new File("C:\\hold\\thumbnails\\_cg_836___Tilting_Windmills___by_Serena_Clearwater.png"));
BufferedImage gray = toGrayScale(master);
BufferedImage sepia = toSepia(master, 80);
JPanel panel = new JPanel(new GridBagLayout());
panel.add(new JLabel(new ImageIcon(master)));
panel.add(new JLabel(new ImageIcon(gray)));
panel.add(new JLabel(new ImageIcon(sepia)));
JOptionPane.showMessageDialog(null, panel);
} catch (IOException ex) {
ex.printStackTrace();
}
}
});
}
public static BufferedImage toGrayScale(BufferedImage master) {
BufferedImage gray = new BufferedImage(master.getWidth(), master.getHeight(), BufferedImage.TYPE_INT_ARGB);
// Automatic converstion....
ColorConvertOp op = new ColorConvertOp(ColorSpace.getInstance(ColorSpace.CS_GRAY), null);
op.filter(master, gray);
return gray;
}
public static BufferedImage toSepia(BufferedImage img, int sepiaIntensity) {
BufferedImage sepia = new BufferedImage(img.getWidth(), img.getHeight(), BufferedImage.TYPE_INT_RGB);
// Play around with this. 20 works well and was recommended
// by another developer. 0 produces black/white image
int sepiaDepth = 20;
int w = img.getWidth();
int h = img.getHeight();
WritableRaster raster = sepia.getRaster();
// We need 3 integers (for R,G,B color values) per pixel.
int[] pixels = new int[w * h * 3];
img.getRaster().getPixels(0, 0, w, h, pixels);
// Process 3 ints at a time for each pixel. Each pixel has 3 RGB
// colors in array
for (int i = 0; i < pixels.length; i += 3) {
int r = pixels[i];
int g = pixels[i + 1];
int b = pixels[i + 2];
int gry = (r + g + b) / 3;
r = g = b = gry;
r = r + (sepiaDepth * 2);
g = g + sepiaDepth;
if (r > 255) {
r = 255;
}
if (g > 255) {
g = 255;
}
if (b > 255) {
b = 255;
}
// Darken blue color to increase sepia effect
b -= sepiaIntensity;
// normalize if out of bounds
if (b < 0) {
b = 0;
}
if (b > 255) {
b = 255;
}
pixels[i] = r;
pixels[i + 1] = g;
pixels[i + 2] = b;
}
raster.setPixels(0, 0, w, h, pixels);
return sepia;
}
}
您可以找到sepia算法的原始发布here
因为我很顽固......我改变了棕褐色算法来处理基于alpha的图像......
public static BufferedImage toSepia(BufferedImage img, int sepiaIntensity) {
BufferedImage sepia = new BufferedImage(img.getWidth(), img.getHeight(), BufferedImage.TYPE_INT_ARGB);
// Play around with this. 20 works well and was recommended
// by another developer. 0 produces black/white image
int sepiaDepth = 20;
int w = img.getWidth();
int h = img.getHeight();
WritableRaster raster = sepia.getRaster();
// We need 3 integers (for R,G,B color values) per pixel.
int[] pixels = new int[w * h * 3];
img.getRaster().getPixels(0, 0, w, h, pixels);
for (int x = 0; x < img.getWidth(); x++) {
for (int y = 0; y < img.getHeight(); y++) {
int rgb = img.getRGB(x, y);
Color color = new Color(rgb, true);
int r = color.getRed();
int g = color.getGreen();
int b = color.getBlue();
int gry = (r + g + b) / 3;
r = g = b = gry;
r = r + (sepiaDepth * 2);
g = g + sepiaDepth;
if (r > 255) {
r = 255;
}
if (g > 255) {
g = 255;
}
if (b > 255) {
b = 255;
}
// Darken blue color to increase sepia effect
b -= sepiaIntensity;
// normalize if out of bounds
if (b < 0) {
b = 0;
}
if (b > 255) {
b = 255;
}
color = new Color(r, g, b, color.getAlpha());
sepia.setRGB(x, y, color.getRGB());
}
}
return sepia;
}
答案 1 :(得分:2)
我使用@@ MadProgrammer代码编写此代码。我认为它更有效率。
使用图像的栅格数据而不是访问图像的每个字节。虽然它似乎将数据复制到像素数组中,但它并未在程序中使用。
每次调用getRGB + getWidth()+ getHeight()+ getRed(),getGreen()+ getBlue()。
将颜色直接写入图像,我认为一旦使用setRGB编写颜色就会成为瓶颈,您将失去图形处理器的好处。 (我在某处阅读,但现在找不到链接。)
将颜色转换回Color对象并使用getRGB()将其恢复。
我所做的只是使用逐位运算符,它非常快,然后在我完成它之后复制了像素数组。函数调用很昂贵,我避免使用它们。
但是,感谢@MadProgrammer的想法。
public static BufferedImage toSepia(BufferedImage image, int sepiaIntensity) {
int width = image.getWidth();
int height = image.getHeight();
int sepiaDepth = 20;
int[] imagePixels = image.getRGB(0, 0, width, height, null, 0, width);
for (int i = 0; i < imagePixels.length; i++) {
int color = imagePixels[i];
int r = (color >> 16) & 0xff;
int g = (color >> 8) & 0xff;
int b = (color) & 0xff;
int gry = (r + g + b) / 3;
r = g = b = gry;
r = r + (sepiaDepth * 2);
g = g + sepiaDepth;
if (r > 255) {
r = 255;
}
if (g > 255) {
g = 255;
}
if (b > 255) {
b = 255;
}
// Darken blue color to increase sepia effect
b -= sepiaIntensity;
// normalize if out of bounds
if (b < 0) {
b = 0;
}
if (b > 255) {
b = 255;
}
imagePixels[i] = (color & 0xff000000) + (r << 16) + (g << 8) + b;
}
BufferedImage res = new BufferedImage(width, height, BufferedImage.TYPE_INT_ARGB);
res.setRGB(0, 0, width, height, imagePixels, 0, width);
return res;
}
答案 2 :(得分:1)
您可以为代码重用创建过滤器接口。
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imageio.ImageIO;
public class FilterApp {
public static ClassLoader loader = FilterApp.class.getClassLoader();
public static String outputDir = "build";
public static void main(String[] args) {
try {
BufferedImage srcImage = loadImage("lobster.jpg");
File dir = new File(outputDir);
if (!dir.exists()) {
dir.mkdirs();
}
for (FilterType filter : FilterType.values()) {
BufferedImage filteredImage = filter.applyFilter(srcImage);
String filename = String.format("%s/lobster_%s", outputDir, filter.name().toLowerCase());
writeImage(filteredImage, filename, "jpg");
}
} catch (IOException e) {
e.printStackTrace();
}
}
private static BufferedImage loadImage(String filename) throws IOException {
return ImageIO.read(loader.getResourceAsStream("resources/" + filename));
}
private static void writeImage(BufferedImage image, String filename, String ext) throws IOException {
ImageIO.write(image, ext, new File(filename + '.' + ext));
}
}
import java.awt.image.BufferedImage;
import filter.GreyscaleFilter;
import filter.ImageFilter;
import filter.InvertFilter;
import filter.SepiaFilter;
public enum FilterType {
GREYSCALE(new GreyscaleFilter()),
INVERT(new InvertFilter()),
SEPIA_10(new SepiaFilter(10));
private ImageFilter filter;
public ImageFilter getFilter() { return filter; }
public BufferedImage applyFilter(BufferedImage img) {
return this.filter.apply(img);
}
private FilterType(ImageFilter filter) {
this.filter = filter;
}
}
package filter;
import java.awt.image.BufferedImage;
/** Common Interface for different filters. */
public interface ImageFilter {
public BufferedImage apply(BufferedImage img);
}
package filter;
import java.awt.color.ColorSpace;
import java.awt.image.BufferedImage;
import java.awt.image.ColorConvertOp;
public class GreyscaleFilter implements ImageFilter {
@Override
public BufferedImage apply(BufferedImage img) {
BufferedImage result = new BufferedImage(img.getWidth(), img.getHeight(), img.getType());
ColorConvertOp op = new ColorConvertOp(ColorSpace.getInstance(ColorSpace.CS_GRAY), null);
op.filter(img, result);
return result;
}
}
package filter;
import java.awt.Color;
import java.awt.image.BufferedImage;
public class InvertFilter implements ImageFilter {
@Override
public BufferedImage apply(BufferedImage img) {
BufferedImage result = new BufferedImage(img.getWidth(), img.getHeight(), img.getType());
for (int x = 0; x < img.getWidth(); x++) {
for (int y = 0; y < img.getHeight(); y++) {
int rgb = img.getRGB(x, y);
Color color = new Color(rgb, true);
int r = 255 - color.getRed();
int g = 255 - color.getGreen();
int b = 255 - color.getBlue();
color = new Color(r, g, b, color.getAlpha());
result.setRGB(x, y, color.getRGB());
}
}
return result;
}
}
package filter;
import java.awt.Color;
import java.awt.image.BufferedImage;
// Algorithm obtained from http://stackoverflow.com/questions/21899824
public class SepiaFilter implements ImageFilter {
private int intensity;
public void setIntensity(int intensity) { this.intensity = intensity; }
public int getIntensity() { return intensity; }
public SepiaFilter(int intensity) {
this.intensity = intensity;
}
@Override
public BufferedImage apply(BufferedImage img) {
BufferedImage result = new BufferedImage(img.getWidth(), img.getHeight(), img.getType());
// Play around with this.
// 20 works well and was recommended by another developer.
// 0 produces black/white image
int sepiaDepth = 20;
int w = img.getWidth();
int h = img.getHeight();
// We need 3 integers (for R,G,B color values) per pixel.
int[] pixels = new int[w * h * 3];
img.getRaster().getPixels(0, 0, w, h, pixels);
for (int x = 0; x < img.getWidth(); x++) {
for (int y = 0; y < img.getHeight(); y++) {
int rgb = img.getRGB(x, y);
Color color = new Color(rgb, true);
int r = color.getRed();
int g = color.getGreen();
int b = color.getBlue();
int gry = (r + g + b) / 3;
r = g = b = gry;
r = r + (sepiaDepth * 2);
g = g + sepiaDepth;
if (r > 255) { r = 255; }
if (g > 255) { g = 255; }
if (b > 255) { b = 255; }
// Darken blue color to increase sepia effect
b -= this.intensity;
// normalize if out of bounds
if (b < 0) { b = 0; }
if (b > 255) { b = 255; }
color = new Color(r, g, b, color.getAlpha());
result.setRGB(x, y, color.getRGB());
}
}
return result;
}
}
来源图片
生成图像