使用OpenMP将代码与2个函数调用并行化

时间:2014-02-18 11:20:18

标签: c multithreading parallel-processing openmp

我想并行化一个代码部分,它使用OpenMP执行2个函数调用。我尝试使用“sections”参数,如下所示:

int func(int *V1, int *V2, int length){
  int result=0;
  int i;

  for(i=0;i<length;i++){
    result = result + V1[i] + V2[i];
  }
  return result;
}

int main(){

  omp_set_num_threads(32);
  #pragma omp parallel sections
  {
    #pragma omp section
    {
      result1 = func(array_A,array_B,1000000);
    }
    #pragma omp section
    {
      result2 = func(array_X,array_Y,2000000);
    }
  }
}

但是我只获得了33%的效率(每个函数只执行一个线程)。 例如,我想使用16个线程来执行每个函数,但我找不到解决方案(我尝试在每个函数中使用#pragma omp parallel for没有好的结果)。

1 个答案:

答案 0 :(得分:2)

不要使用部分。不要设置线程数(使用默认值)。这样做:

#include <stdlib.h>   
int func(int *V1, int *V2, int length) {
    int result=0;
    int i;
    #pragma omp parallel for reduction(+:result)
    for(i=0;i<length;i++) {
        result += V1[i] + V2[i];
    }
    return result;
}

int main(){
    int result1, result2;
    int *array_A, *array_B, *array_X, *array_Y;
    array_A = malloc(sizeof(int)*1000000);
    array_B = malloc(sizeof(int)*1000000);
    array_X = malloc(sizeof(int)*2000000);
    array_Y = malloc(sizeof(int)*2000000);

    result1 = func(array_A,array_B,1000000);
    result2 = func(array_X,array_Y,2000000);
    //now do something with result1 and result2
    return 0;
}

由于OP坚持在函数调用之间划分线程,我已经提出了一个解决方案。这不是正确的方法,它不会比上面的代码更好,但无论如何它都在这里。

void foo(int *V1, int *V2, int length1, int *V3, int *V4, int length2) {
    int result1, result2;
    result1=0; result2=0;
    #pragma omp parallel
    {
        int i, ithread, nthreads, start, finish, result_private, *a1, *a2;
        ithread = omp_get_thread_num(); nthreads = omp_get_num_threads();
        if(ithread<nthreads/2) {
            start = ithread*length1/(nthreads/2);
            finish = (ithread+1)*length1/(nthreads/2);
            a1 = V1; a2 = V2;          
        }
        else {
            start  = (ithread - nthreads/2)*length2/(nthreads - nthreads/2);
            finish = (ithread+1 - nthreads/2)*length2/(nthreads - nthreads/2);
            a1 = V3; a2 = V4;
        }
        result_private = 0;
        #pragma omp for nowait
        for(i=start; i<finish; i++) {
            result_private += a1[i] + a2[i];
        }
        #pragma omp critical
        {
            if(ithread<nthreads/2) {
                result1 += result_private;
            }
            else {
                result2 += result_private;
            }
        }
    }
}