使用numpy的加权百分位数

时间:2014-02-18 03:55:33

标签: python numpy weighted percentile

有没有办法使用numpy.percentile函数来计算加权百分位数?或者是否有人知道计算加权百分位数的替代python函数?

谢谢!

11 个答案:

答案 0 :(得分:33)

完全矢量化的numpy解决方案

这是我正在使用的代码。它不是最优的(我在numpy中无法写入),但仍然比接受的解决方案更快,更可靠

def weighted_quantile(values, quantiles, sample_weight=None, 
                      values_sorted=False, old_style=False):
    """ Very close to numpy.percentile, but supports weights.
    NOTE: quantiles should be in [0, 1]!
    :param values: numpy.array with data
    :param quantiles: array-like with many quantiles needed
    :param sample_weight: array-like of the same length as `array`
    :param values_sorted: bool, if True, then will avoid sorting of
        initial array
    :param old_style: if True, will correct output to be consistent
        with numpy.percentile.
    :return: numpy.array with computed quantiles.
    """
    values = np.array(values)
    quantiles = np.array(quantiles)
    if sample_weight is None:
        sample_weight = np.ones(len(values))
    sample_weight = np.array(sample_weight)
    assert np.all(quantiles >= 0) and np.all(quantiles <= 1), \
        'quantiles should be in [0, 1]'

    if not values_sorted:
        sorter = np.argsort(values)
        values = values[sorter]
        sample_weight = sample_weight[sorter]

    weighted_quantiles = np.cumsum(sample_weight) - 0.5 * sample_weight
    if old_style:
        # To be convenient with numpy.percentile
        weighted_quantiles -= weighted_quantiles[0]
        weighted_quantiles /= weighted_quantiles[-1]
    else:
        weighted_quantiles /= np.sum(sample_weight)
    return np.interp(quantiles, weighted_quantiles, values)

示例:

  

weighted_quantile([1,2,9,3.2,4],[0.0,0.5,1。])

数组([1.,3.2,9。])

  

weighted_quantile([1,2,9,3.2,4],[0.0,0.5,1。],sample_weight = [2,1,2,4,1])

数组([1.,3.2,9。])

答案 1 :(得分:9)

快速解决方案,首先排序然后插值:

def weighted_percentile(data, percents, weights=None):
    ''' percents in units of 1%
        weights specifies the frequency (count) of data.
    '''
    if weights is None:
        return np.percentile(data, percents)
    ind=np.argsort(data)
    d=data[ind]
    w=weights[ind]
    p=1.*w.cumsum()/w.sum()*100
    y=np.interp(percents, p, d)
    return y

答案 2 :(得分:6)

为额外的(非原创)答案道歉(没有足够的代表评论@nayyarv&#39; s)。他的解决方案对我有用(即它复制了np.percentage的默认行为),但我认为你可以通过原始np.percentage的编写方式消除for循环。

def weighted_percentile(a, q=np.array([75, 25]), w=None):
    """
    Calculates percentiles associated with a (possibly weighted) array

    Parameters
    ----------
    a : array-like
        The input array from which to calculate percents
    q : array-like
        The percentiles to calculate (0.0 - 100.0)
    w : array-like, optional
        The weights to assign to values of a.  Equal weighting if None
        is specified

    Returns
    -------
    values : np.array
        The values associated with the specified percentiles.  
    """
    # Standardize and sort based on values in a
    q = np.array(q) / 100.0
    if w is None:
        w = np.ones(a.size)
    idx = np.argsort(a)
    a_sort = a[idx]
    w_sort = w[idx]

    # Get the cumulative sum of weights
    ecdf = np.cumsum(w_sort)

    # Find the percentile index positions associated with the percentiles
    p = q * (w.sum() - 1)

    # Find the bounding indices (both low and high)
    idx_low = np.searchsorted(ecdf, p, side='right')
    idx_high = np.searchsorted(ecdf, p + 1, side='right')
    idx_high[idx_high > ecdf.size - 1] = ecdf.size - 1

    # Calculate the weights 
    weights_high = p - np.floor(p)
    weights_low = 1.0 - weights_high

    # Extract the low/high indexes and multiply by the corresponding weights
    x1 = np.take(a_sort, idx_low) * weights_low
    x2 = np.take(a_sort, idx_high) * weights_high

    # Return the average
    return np.add(x1, x2)

# Sample data
a = np.array([1.0, 2.0, 9.0, 3.2, 4.0], dtype=np.float)
w = np.array([2.0, 1.0, 3.0, 4.0, 1.0], dtype=np.float)

# Make an unweighted "copy" of a for testing
a2 = np.repeat(a, w.astype(np.int))

# Tests with different percentiles chosen
q1 = np.linspace(0.0, 100.0, 11)
q2 = np.linspace(5.0, 95.0, 10)
q3 = np.linspace(4.0, 94.0, 10)
for q in (q1, q2, q3):
    assert np.all(weighted_percentile(a, q, w) == np.percentile(a2, q))

答案 3 :(得分:5)

不幸的是,numpy没有内置的加权函数,但是,你可以随时把它放在一起。

def weight_array(ar, weights):
     zipped = zip(ar, weights)
     weighted = []
     for i in zipped:
         for j in range(i[1]):
             weighted.append(i[0])
     return weighted


np.percentile(weight_array(ar, weights), 25)

答案 4 :(得分:5)

我不知道加权百分位是什么意思,但是从@Joan Smith的答案来看,似乎你只需要重复ar中的每个元素,你可以使用numpy.repeat()

import numpy as np
np.repeat([1,2,3], [4,5,6])

结果是:

array([1, 1, 1, 1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3])

答案 5 :(得分:3)

我根据自己的需要使用此功能:

def quantile_at_values(values, population, weights=None):
    values = numpy.atleast_1d(values).astype(float)
    population = numpy.atleast_1d(population).astype(float)
    # if no weights are given, use equal weights
    if weights is None:
        weights = numpy.ones(population.shape).astype(float)
        normal = float(len(weights))
    # else, check weights                  
    else:                                           
        weights = numpy.atleast_1d(weights).astype(float)
        assert len(weights) == len(population)
        assert (weights >= 0).all()
        normal = numpy.sum(weights)                    
        assert normal > 0.
    quantiles = numpy.array([numpy.sum(weights[population <= value]) for value in values]) / normal
    assert (quantiles >= 0).all() and (quantiles <= 1).all()
    return quantiles
  • 我尽可能地进行矢量化。
  • 它有很多健全性检查。
  • 它适用于花车作为重量。
  • 它可以在没有重量的情况下工作(→相等的重量)。
  • 它可以一次计算多个分位数。

如果你想要百分位而不是分位数,则将结果乘以100。

答案 6 :(得分:3)

使用此reference进行加权百分位数方法更加简洁。

import numpy as np

def weighted_percentile(data, weights, perc):
    """
    perc : percentile in [0-1]!
    """
    ix = np.argsort(data)
    data = data[ix] # sort data
    weights = weights[ix] # sort weights
    cdf = (np.cumsum(weights) - 0.5 * weights) / np.sum(weights) # 'like' a CDF function
    return np.interp(perc, cdf, data)

答案 7 :(得分:2)

正如评论中所提到的,简单地重复值对于浮点权重是不可能的,对于非常大的数据集而言是不切实际的。这里有一个加权百分位数的库: http://kochanski.org/gpk/code/speechresearch/gmisclib/gmisclib.weighted_percentile-module.html 它对我有用。

答案 8 :(得分:1)

这似乎现在已在statsmodels中实现

from statsmodels.stats.weightstats import DescrStatsW
wq = DescrStatsW(data=np.array([1, 2, 9, 3.2, 4]), weights=np.array([0.0, 0.5, 1.0, 0.3, 0.5]))
wq.quantile(probs=np.array([0.1, 0.9]), return_pandas=False)
# array([2., 9.])

DescrStatsW对象还实现了其他方法,例如加权平均值等。https://www.statsmodels.org/stable/generated/statsmodels.stats.weightstats.DescrStatsW.html

答案 9 :(得分:0)

这是我的解决方案:

def my_weighted_perc(data,perc,weights=None):
    if weights==None:
        return nanpercentile(data,perc)
    else:
        d=data[(~np.isnan(data))&(~np.isnan(weights))]
        ix=np.argsort(d)
        d=d[ix]
        wei=weights[ix]
        wei_cum=100.*cumsum(wei*1./sum(wei))
        return interp(perc,wei_cum,d)

它只是计算数据的加权CDF,然后用它来估计加权百分位数。

答案 10 :(得分:0)

weightedcalcs package支持quantiles

import weightedcalcs as wc
import pandas as pd

df = pd.DataFrame({'v': [1, 2, 3], 'w': [3, 2, 1]})
calc = wc.Calculator('w')  # w designates weight

calc.quantile(df, 'v', 0.5)
# 1.5