如何获得至少一定大小的列表分组的所有组合?

时间:2014-02-17 17:11:13

标签: java python split combinations

给定python中的列表(或者java,我试图用两种语言来做),我怎样才能获得将列表拆分成不同分组的所有不同方法,因为每个分组必须至少具有一定的大小?我认为获得分割位置的组合是最好的方法。

列表和最小尺寸的示例输入是

[1,2,3], 2

,相应的输出应为

[[1,2], [1,3], [2,3], [1,2,3]]

2 个答案:

答案 0 :(得分:2)

在Python中,你可以递归地执行此操作:

def partition(lst, minsize=1):
    yield [lst]
    for n in range(minsize, len(lst)-minsize+1):
        for p in partition(lst[n:], minsize):
            yield [lst[:n]] + [l for l in p]

例如:

>>> lst = [1, 2, 3, 4, 5, 6, 7]
>>> partition(lst, 3)
[[[1, 2, 3, 4, 5, 6, 7]], 
 [[1, 2, 3], [4, 5, 6, 7]], 
 [[1, 2, 3, 4], [5, 6, 7]]]
>>> list(partition(lst, 2))
[[[1, 2, 3, 4, 5, 6, 7]], [[1, 2], [3, 4, 5, 6, 7]], 
 [[1, 2], [3, 4], [5, 6, 7]], [[1, 2], [3, 4, 5], [6, 7]], 
 [[1, 2, 3], [4, 5, 6, 7]], [[1, 2, 3], [4, 5], [6, 7]], 
 [[1, 2, 3, 4], [5, 6, 7]], [[1, 2, 3, 4, 5], [6, 7]]]

答案 1 :(得分:1)

修改

根据OP的新输入/输出要求,它只是几行:

def groupings(lst, min_size):
    results = [tuple(lst)]
    for i in range(min_size, len(lst)):
        results.extend(combinations(lst, i))
    return results

<强> ORIGINAL

(基于错误的假设,即OP希望给定最小分区大小的所有可能分区。)

所以itertools.combinations()应该是一个起点。例如,

>>> list(combinations('ABCD', 2))
[('A', 'B'), ('A', 'C'), ('A', 'D'), ('B', 'C'), ('B', 'D'), ('C', 'D')]

所以这给了你一个答案。您的分组输出&#39; ABCD&#39;最小尺寸设置为2是:

[['A', 'B', 'C', 'D']]
[['A', 'D'], ['B', 'C']]
[['A', 'C'], ['B', 'D']]
[['A', 'B'], ['C', 'D']]

所以高级流程应该是粗略的:

results = []
remaining = [([], list)] # Start without any groups and the full list

while remaining not empty:

    groups, list = remaining.pop()

    if len(list) >= min_size:
        results.append(groups + list)

    for size in min_size to len(list) - 1:

        for combo in combinations:
           new <- (groups + combo, list - combo)

           if new will not cause duplicates:
               remaining.append(new)

以下是一些似乎有用的代码。为了避免重复,并处理原始列表可能有重复的情况,我修改了itertools.combinations中的代码,而不是仅使用该方法。

def groupings(lst, min_size):

    lst = list(lst)

    # List for storing our final groupings
    results = []

    # Unfinished grouping, tuple storing the group and remaining sub-list
    # Initialize with the empty group and original list
    remaining = [([], lst)]

    # Continue as long as we have unfinished groupings
    while len(remaining):

        # Get an unfinished grouping 
        current_group, current_lst = remaining.pop()
        n = len(current_lst)

        # If the last part of the list is big enough,
        # then record the grouping
        if n >= min_size:
            results.append(current_group + [current_lst])

        # Otherwise, discard it
        else:
            continue

        # Helper set for getting remainder below
        all_indices = set(range(n))

        # Iterate the group length from min_size to the length of our current list
        for r in range(min_size, n - 1):

            # This is a modified version of itertools.combinations()
            # http://docs.python.org/3.3/library/itertools.html#itertools.combinations

            # Add the first combination to our remaining list
            indices = list(range(r))
            remainder = current_lst[r:]
            group = current_group + [current_lst[:r]]
            remaining.append((group, remainder))

            while True:
                for i in reversed(range(r)):
                    if indices[i] != i + n - r:
                        break
                else:
                    break

                indices[i] += 1
                for j in range(i+1, r):
                    indices[j] = indices[j-1] + 1

                # If one of the remaining indexes is less than the minimum used index,
                # then a different iteration will handle it, so discard this one
                min_index = min(indices)
                remainder = []
                for i in all_indices.difference(indices):
                    remainder.append(current_lst[i])
                    if i < min_index:
                        break
                else:
                    # Add this combination to our remaining list
                    group = current_group + [[current_lst[i] for i in indices]]
                    remaining.append((group, remainder))

    return results

结果:

>>> groupings('ABCDE', 2)
[['A', 'B', 'C', 'D', 'E']]
[['A', 'D', 'E'], ['B', 'C']]
[['A', 'C', 'E'], ['B', 'D']]
[['A', 'C', 'D'], ['B', 'E']]
[['A', 'B', 'E'], ['C', 'D']]
[['A', 'B', 'D'], ['C', 'E']]
[['A', 'B', 'C'], ['D', 'E']]
[['A', 'E'], ['B', 'C', 'D']]
[['A', 'D'], ['B', 'C', 'E']]
[['A', 'C'], ['B', 'D', 'E']]
[['A', 'B'], ['C', 'D', 'E']]