我在堆栈溢出中经历了很多代码并在同一行上创建了自己的代码。这段代码有些问题我无法理解。我存储值theta1和theta 2以及成本函数用于分析目的。 可以从此处下载x和Y的数据 Openclassroom页面。它有.dat文件形式的x和Y数据,您可以在记事本中打开。
%Single Variate Gradient Descent Algorithm%%
clc
clear all
close all;
% Step 1 Load x series/ Input data and Output data* y series
x=load('D:\Office Docs_Jay\software\ex2x.dat');
y=load('D:\Office Docs_Jay\software\ex2y.dat');
%Plot the input vectors
plot(x,y,'o');
ylabel('Height in meters');
xlabel('Age in years');
% Step 2 Add an extra column of ones in input vector
[m n]=size(x);
X=[ones(m,1) x];%Concatenate the ones column with x;
% Step 3 Create Theta vector
theta=zeros(n+1,1);%theta 0,1
% Create temporary values for storing summation
temp1=0;
temp2=0;
% Define Learning Rate alpha and Max Iterations
alpha=0.07;
max_iterations=1;
% Step 4 Iterate over loop
for i=1:1:max_iterations
%Calculate Hypothesis for all training example
for k=1:1:m
h(k)=theta(1,1)+theta(2,1)*X(k,2); %#ok<AGROW>
temp1=temp1+(h(k)-y(k));
temp2=temp2+(h(k)-y(k))*X(k,2);
end
% Simultaneous Update
tmp1=theta(1,1)-(alpha*1/(2*m)*temp1);
tmp2=theta(2,1)-(alpha*(1/(2*m))*temp2);
theta(1,1)=tmp1;
theta(2,1)=tmp2;
theta1_history(i)=theta(2,1); %#ok<AGROW>
theta0_history(i)=theta(1,1); %#ok<AGROW>
% Step 5 Calculate cost function
tmp3=0;
tmp4=0;
for p=1:m
tmp3=tmp3+theta(1,1)+theta(2,1)*X(p,1);
tmp4=tmp4+theta(1,1)+theta(2,1)*X(p,2);
end
J1_theta0(i)=tmp3*(1/(2*m)); %#ok<AGROW>
J2_theta1(i)=tmp4*(1/(2*m)); %#ok<AGROW>
end
theta
hold on;
plot(X(:,2),theta(1,1)+theta(2,1)*X);
我得到了
的价值theta as 0.0373 和0.1900应该是0.0745和0.3800
这个值大约是我期待的两倍。
答案 0 :(得分:25)
我一直在尝试用矩阵和向量来实现迭代步骤(即不更新theta的每个参数)。 这是我想出的(这里只有渐变步骤):
h = X * theta; # hypothesis
err = h - y; # error
gradient = alpha * (1 / m) * (X' * err); # update the gradient
theta = theta - gradient;
难以掌握的是前面例子的梯度步骤中的“和”实际上是由矩阵乘法X'*err
执行的。
您也可以将其写为(err'*X)'
答案 1 :(得分:5)
我设法创建了一个使用Matlab支持的更多矢量化属性的算法。 我的算法与你的算法略有不同,但是你提出的是梯度下降过程。 在我执行的执行和验证(使用polyfit函数)之后,我认为在1500次迭代步骤之后,变量theta(0)= 0.0745和theta(1)= 0.3800中预期的openclassroom(练习2)中的值是错误的0.07(我不回应)。这就是为什么我用一个图中的数据绘制我的结果,而另一个图中的数据绘制了所需的结果,我发现数据拟合程序有很大差异。
首先看一下代码:
% Machine Learning : Linear Regression
clear all; close all; clc;
%% ======================= Plotting Training Data =======================
fprintf('Plotting Data ...\n')
x = load('ex2x.dat');
y = load('ex2y.dat');
% Plot Data
plot(x,y,'rx');
xlabel('X -> Input') % x-axis label
ylabel('Y -> Output') % y-axis label
%% =================== Initialize Linear regression parameters ===================
m = length(y); % number of training examples
% initialize fitting parameters - all zeros
theta=zeros(2,1);%theta 0,1
% Some gradient descent settings
iterations = 1500;
Learning_step_a = 0.07; % step parameter
%% =================== Gradient descent ===================
fprintf('Running Gradient Descent ...\n')
%Compute Gradient descent
% Initialize Objective Function History
J_history = zeros(iterations, 1);
m = length(y); % number of training examples
% run gradient descent
for iter = 1:iterations
% In every iteration calculate hypothesis
hypothesis=theta(1).*x+theta(2);
% Update theta variables
temp0=theta(1) - Learning_step_a * (1/m)* sum((hypothesis-y).* x);
temp1=theta(2) - Learning_step_a * (1/m) *sum(hypothesis-y);
theta(1)=temp0;
theta(2)=temp1;
% Save objective function
J_history(iter)=(1/2*m)*sum(( hypothesis-y ).^2);
end
% print theta to screen
fprintf('Theta found by gradient descent: %f %f\n',theta(1), theta(2));
fprintf('Minimum of objective function is %f \n',J_history(iterations));
% Plot the linear fit
hold on; % keep previous plot visible
plot(x, theta(1)*x+theta(2), '-')
% Validate with polyfit fnc
poly_theta = polyfit(x,y,1);
plot(x, poly_theta(1)*x+poly_theta(2), 'y--');
legend('Training data', 'Linear regression','Linear regression with polyfit')
hold off
figure
% Plot Data
plot(x,y,'rx');
xlabel('X -> Input') % x-axis label
ylabel('Y -> Output') % y-axis label
hold on; % keep previous plot visible
% Validate with polyfit fnc
poly_theta = polyfit(x,y,1);
plot(x, poly_theta(1)*x+poly_theta(2), 'y--');
% for theta values that you are saying
theta(1)=0.0745; theta(2)=0.3800;
plot(x, theta(1)*x+theta(2), 'g--')
legend('Training data', 'Linear regression with polyfit','Your thetas')
hold off
好的结果如下:
根据我的算法生成的theta(0)和theta(1),行符合数据。
以theta(0)和theta(1)为固定值,行不适合数据。
答案 2 :(得分:0)
以下是一些评论:
max_iterations
设置为1
。通常运行梯度下降,直到目标函数的减少低于某个阈值或梯度的幅度低于某个阈值,这可能会超过一次迭代。
因子1 /(2 * m)在技术上不正确。这不应该导致算法失败,但会有效地降低学习速度。
您没有计算出正确的目标。正确的线性回归目标应该是平方残差平均值的一半,或者是残差平方和的一半。
您应该利用matlab的矢量化计算,而不是使用for循环。例如,res=X*theta-y; obj=.5/m*res'res;
应计算残差(res
)和线性回归目标(obj
)。
答案 3 :(得分:0)
你需要放 temp1 = 0 temp2 = 0 作为迭代循环中的第一个注释; 如果你不这样做,你当前的临时会影响下一次迭代,这是错误的
答案 4 :(得分:0)
根据您期望的Ɵ
(theta)的值和程序的结果,可以注意到预期值是结果的两倍。
您可能犯的错误是在衍生计算代码中使用1/(2*m)
代替1/m
。在导数中,分母的2
消失,因为原始术语是(h Ɵ(x) - y) 2 ,其中分化产生 2 *(h Ɵ(x) - y)。
2s取消了。
修改这些代码行:
J1_theta0(i)=tmp3*(1/(2*m)); %#ok<AGROW>
J2_theta1(i)=tmp4*(1/(2*m)); %#ok<AGROW>
到
J1_theta0(i)=tmp3*(1/m); %#ok<AGROW>
J2_theta1(i)=tmp4*(1/m); %#ok<AGROW>
希望它有所帮助。