跟着this example使用PYMC3进行非常简单的贝叶斯线性回归(学习,我希望)我得到了最初的例子,然后尝试使用我自己的数据并得到:
ValueError: Optimization error: max, logp or dlogp at max have non-finite values.
Some values may be outside of distribution support. max: {'alpha': array(50000.0),
'beta': array(50000.0), 'sigma': array(25000.0)} logp: array(nan) dlogp: array([ nan,
nan, nan])Check that 1) you don't have hierarchical parameters, these will lead to
points with infinite density. 2) your distribution logp's are properly specified.
Specific issues:
怀疑是由于我的数据范围,但很可能是我不理解其他参数。数据和代码如下:这应该只是在我希望的IPython笔记本中运行。当完成所有操作时,lastqu应该预测单位。
import pandas as pd
import io
content2 = '''\
Units lastqu
2000-12-31 19391 NaN
2001-12-31 35068 5925
2002-12-31 39279 8063
2003-12-31 47517 9473
2004-12-31 51439 11226
2005-12-31 59674 11667
2006-12-31 58664 14016
2007-12-31 55698 13186
2008-12-31 42235 11343
2009-12-31 40478 7867
2010-12-31 38722 8114
2011-12-31 36965 8361
2012-12-31 39132 8608
2013-12-31 43160 9016
2014-12-31 NaN 9785
'''
df2 = pd.read_table(io.BytesIO(content2))
#make sure that the columns are int, it is all a DataFrame
df2['Units']=df2['Units'][:-1].astype('int')
df2['lastqu']=df2['lastqu'][1:].astype('int')
df2
我尝试过的模型代码是:
import pymc as pm
#import numpy as np
x=df2['lastqu'] <<<< my best guess as to how to specify my data
y=df2['Units']
trace = None
with pm.Model() as model:
alpha = pm.Normal('alpha', mu=0, sd=20)
beta = pm.Normal('beta', mu=0, sd=20)
sigma = pm.Uniform('sigma', lower=0, upper=50000)
y_est = alpha + beta * x
likelihood = pm.Normal('y', mu=y_est, sd=sigma, observed=y)
start = pm.find_MAP()
step = pm.NUTS(state=start)
trace = pm.sample(2000, step, start=start, progressbar=False)
pm.traceplot(trace);
答案 0 :(得分:1)
这有效:
df2=df2[1:-1] <<<< gets rid of NaN from example data
df2
%matplotlib inline
import pymc as pm
#import numpy as np
x=df2['lastqu'] <<<< my best guess as to how to specify my data
y=df2['Units']
trace = None
with pm.Model() as model:
alpha = pm.Normal('alpha', mu=0, sd=20)
beta = pm.Normal('beta', mu=0, sd=20)
sigma = pm.Uniform('sigma', lower=0, upper=50000)
y_est = alpha + beta * x
likelihood = pm.Normal('y', mu=y_est, sd=sigma, observed=y)
start = pm.find_MAP()
step = pm.NUTS(state=start)
trace = pm.sample(2000, step, start=start, progressbar=False)
pm.traceplot(trace);
再次感谢@fonnesbeck !!