具有函数f(x,y,z),我需要解决限制f(x,y,z)= 0然后绘制它。我试图为每对(y,z)找到f(x,y,z)= 0的值x:
from numpy import *
from scipy.optimize import fsolve
def func(x,y,z):
return x+y+z
y = linspace(0,1,100)
z = linspace(0,1,100)
x0 = zeros((y.size,z.size)) + 0.5 # the initial guess
yz = (y[:,newaxis],z[newaxis,:]) # the other parameters
x, info, iterations, message = fsolve(func,x0,yz)
contour(y,z,x)
Python(2.7.5)说“TypeError:fsolve:'func'参数'func'的输入和输出形状之间存在不匹配。”
但如果我自己测试它,它会给出相同的形状:
func(x0,y[:,newaxis],z[:,newaxis]).shape == x0.shape
返回True。
为什么fsolve()抱怨?
答案 0 :(得分:2)
fsolve
期望x
参数和func
的返回值是标量或一维数组。您必须修改代码才能使用展平的x
值。 E.g。
def func(x, y, z):
x = x.reshape(y.size, z.size)
return (x + y + z).ravel()
对于fsolve
的调用以及类似的内容:
sol, info, ier, mesg = fsolve(func, x0.ravel(), args=yz, full_output=True)
x = sol.reshape(y.size, z.size)
答案 1 :(得分:2)
以下是与scipy.optimize tutorial中广告的krylov
方法的比较:
from numpy import linspace, zeros, newaxis
import time
from scipy.optimize import root
def func(x,y,z):
x = x.reshape(y.size, z.size)
f = x + y + z
f = f.ravel()
return f
n = 50
y = linspace(0,1,n)
z = linspace(0,1,n)
x0 = zeros((y.size,z.size)) + 0.5 # the initial guess
yz = (y[:,newaxis],z[newaxis,:]) # the other parameters
start = time.time()
sol1 = root(func, x0.ravel(), args=yz, method='hybr', tol=1e-7) # same as fsolve
x1 = sol1.x.reshape(y.size, z.size)
print("(fsolve) time taken (sec): %g" % (time.time() - start,))
print("(fsolve) successful: %r (%s)" % (sol1.success, sol1.message))
print("(fsolve) max error: %g" % (abs(func(x1, *yz)).max(),))
start = time.time()
sol2 = root(func, x0.ravel(), args=yz, method='krylov', tol=1e-9)
x2 = sol2.x.reshape(y.size, z.size)
print("(krylov) time taken (sec): %g" % (time.time() - start,))
print("(krylov) successful: %r (%s)" % (sol2.success, sol2.message))
print("(krylov) max error: %g" % (abs(func(x2, *yz)).max(),))
打印
(fsolve) time taken (sec): 26.9296 (fsolve) successful: False (The iteration is not making good progress, as measured by the improvement from the last ten iterations.) (fsolve) max error: 1.52656e-16 (krylov) time taken (sec): 0.0173709 (krylov) successful: True (A solution was found at the specified tolerance.) (krylov) max error: 1.11022e-16