根据列值和位置从Pandas中的层次结构系列中删除行

时间:2014-02-10 04:58:27

标签: python pandas hierarchy

我想从每个事件(级别1)中删除前导和尾随零,但不删除由非零数字包围的零。

以下内容适用于查找和删除全部零:

df = events[event_no][events[event_no] != 0]

我有以下等级系列:

   1    2/09/2010   0
        3/09/2010   1.5
        4/09/2010   4.3
        5/09/2010   5.1
        6/09/2010   0
   2    1/05/2007   53.2
        2/05/2007   0
        3/05/2007   21.5
        4/05/2007   2.5
        5/05/2007   0

并希望:

   1    3/09/2010   1.5
        4/09/2010   4.3
        5/09/2010   5.1
   2    1/05/2007   53.2
        2/05/2007   0
        3/05/2007   21.5
        4/05/2007   2.5

我读过 Deleting DataFrame row in Pandas based on column valueFilter columns of only zeros from a Pandas data frame 但是没有成功解决这个问题。

1 个答案:

答案 0 :(得分:0)

你的dataframe看起来如何。无论如何,不​​应该有任何区别,简单的布尔索引应该这样做:

In [101]:print df

Out [101]:
                   c1
first second         
1     2/09/2010   0.0
      3/09/2010   1.5
      4/09/2010   4.3
      5/09/2010   5.1
      6/09/2010   0.0
2     1/05/2007  53.2
      2/05/2007   0.0
      3/05/2007  21.5
      4/05/2007   2.5
      5/05/2007   0.0


In [102]:

is_edge=argwhere(hstack((0,diff([item[0] for item in df.index.tolist()])))!=0).flatten()
is_edge=hstack((is_edge, is_edge-1, 0, len(df)-1))
g_idx=hstack(([item for item in argwhere(df['c1']==0).flatten() if item not in is_edge], 
              argwhere(df['c1']!=0).flatten()))
print df.ix[sorted(g_idx)]



Out[102]:
                   c1
first second         
1     3/09/2010   1.5
      4/09/2010   4.3
      5/09/2010   5.1
2     1/05/2007  53.2
      2/05/2007   0.0
      3/05/2007  21.5
      4/05/2007   2.5

如果你有一个series而不是dataframe,说系列是s,你可以:

将其转换为dataframe

df=pd.DataFrame(s, columns=['c1'])

或者:

In [113]:
is_edge=argwhere(hstack((0,diff([item[0] for item in s.index.tolist()])))!=0).flatten()
is_edge=hstack((is_edge, is_edge-1, 0, len(s)-1))
g_idx=hstack(([item for item in argwhere(s.values==0).flatten() if item not in is_edge], 
              argwhere(s.values!=0).flatten()))
s[sorted(g_idx)]
Out[113]:
first  second   
1      3/09/2010     1.5
       4/09/2010     4.3
       5/09/2010     5.1
2      1/05/2007    53.2
       2/05/2007     0.0
       3/05/2007    21.5
       4/05/2007     2.5
dtype: float64

BTW,我通过以下方式生成系列:

In [116]:
tuples=[(1, '2/09/2010'),
(1, '3/09/2010'),
(1, '4/09/2010'),
(1, '5/09/2010'),
(1, '6/09/2010'),
(2, '1/05/2007'),
(2, '2/05/2007'),
(2, '3/05/2007'),
(2, '4/05/2007'),
(2, '5/05/2007')]
index = pd.MultiIndex.from_tuples(tuples, names=['first', 'second'])
s = pd.Series(array([0.,1.5,4.3,5.1,0.,53.2,0.,21.5,2.5,0.]), index=index)
s
Out[116]:
first  second   
1      2/09/2010     0.0
       3/09/2010     1.5
       4/09/2010     4.3
       5/09/2010     5.1
       6/09/2010     0.0
2      1/05/2007    53.2
       2/05/2007     0.0
       3/05/2007    21.5
       4/05/2007     2.5
       5/05/2007     0.0
dtype: float64

我有相同的结构吗?