我正在使用R中的插入包用于训练径向基SVM进行分类;此外,线性SVM用于变量选择。使用metric =“Accuracy”,这很好,但最终我更感兴趣的是优化metric =“ROC”。虽然计算所有适合的模型的ROC,但是聚合ROC值似乎存在一些问题。
以下是一些示例代码:
library(caret)
library(mlbench)
set.seed(0)
data(Sonar)
x<-scale(Sonar[,1:60])
y<-as.factor(Sonar[,61])
# Custom summary function to use both
# defaultSummary() and twoClassSummary
# Also input and output of summary function are printed
svm.summary<-function(data, lev = NULL, model = NULL){
print(head(data,n=3))
a<-defaultSummary(data, lev, model)
b<-twoClassSummary(data, lev, model)
out<-c(a,b)
print(out)
out}
fitControl <- trainControl(
method = "cv",
number = 2,
classProbs = TRUE,
summaryFunction=svm.summary,
verbose=T,
allowParallel = FALSE)
# Ranking function: Rank Variables using a linear
# SVM
rankSVM<-function(object,x,y) {
print("ranking")
obj<-ksvm(x=as.matrix(x), y=y,
kernel=vanilladot,
kpar=list(), C=10,
scaled=F)
w<-t(obj@coef[[1]]%*%obj@xmatrix[[1]])
z<-abs(w)/sqrt(sum(w^2))
ord<-order(z,decreasing=T)
data.frame(var=dimnames(z)[[1]][ord],Overall=z[ord])
}
svmFuncs<-getModelInfo("svmRadial",regex=F)
svmFit<-function(x,y,first,last,...) {
out<-train(x=x,y=as.factor(y),
method="svmRadial",
trControl=fitControl,
scaled=F,
metric="Accuracy",
maximize=T,
returnData=T)
out$finalModel}
selectionFunctions<-list(summary=svm.summary,
fit=svmFit,
pred=svmFuncs$svmRadial$predict,
prob=svmFuncs$svmRadial$prob,
rank=rankSVM,
selectSize=pickSizeBest,
selectVar=pickVars)
selectionControl<-rfeControl(functions=selectionFunctions,
rerank=F,
verbose=T,
method="cv",
number=2)
subsets<-c(1,30,60)
svmProfile<-rfe(x=x,y=y,
sizes=subsets,
metric="Accuracy",
maximize=TRUE,
rfeControl=selectionControl)
svmProfile
最终输出如下:
> svmProfile
Recursive feature selection
Outer resampling method: Cross-Validated (2 fold)
Resampling performance over subset size:
Variables Accuracy Kappa ROC Sens Spec AccuracySD KappaSD ROCSD SensSD SpecSD Selected
1 0.8075 0.6122 NaN 0.8292 0.7825 0.02981 0.06505 NA 0.06153 0.1344 *
30 0.8028 0.6033 NaN 0.8205 0.7825 0.00948 0.02533 NA 0.09964 0.1344
60 0.8028 0.6032 NaN 0.8206 0.7823 0.00948 0.02679 NA 0.12512 0.1635
The top 1 variables (out of 1):
V49
ROC是NaN。检查输出(作为详细= T和摘要函数被修补以显示其输出和输入的部分)显示,当调整内循环中的SVM时,ROC似乎正确计算:
+ Fold1: sigma=0.01172, C=0.25
pred obs M R
1 M R 0.6658878 0.3341122
2 M R 0.5679477 0.4320523
3 R R 0.2263576 0.7736424
Accuracy Kappa ROC Sens Spec
0.6730769 0.3480826 0.7961310 0.6428571 0.7083333
- Fold1: sigma=0.01172, C=0.25
+ Fold1: sigma=0.01172, C=0.50
pred obs M R
1 M R 0.7841249 0.2158751
2 M R 0.7231365 0.2768635
3 R R 0.3033492 0.6966508
Accuracy Kappa ROC Sens Spec
0.7692308 0.5214724 0.8407738 0.9642857 0.5416667
- Fold1: sigma=0.01172, C=0.50
[...]
外部迭代中似乎存在问题。 “两次之间”我们得到以下结论:
-(rfe) fit Fold1 size: 1
pred obs Variables
1 M R 1
2 M R 1
3 M R 1
Accuracy Kappa ROC Sens Spec
0.7864078 0.5662328 NA 0.8727273 0.6875000
pred obs Variables
1 R R 30
2 M R 30
3 M R 30
Accuracy Kappa ROC Sens Spec
0.7961165 0.5853939 NA 0.8909091 0.6875000
pred obs Variables
1 R R 60
2 M R 60
3 M R 60
Accuracy Kappa ROC Sens Spec
0.7961165 0.5842783 NA 0.9090909 0.6666667
+(rfe) fit Fold2 size: 60
所以这里似乎摘要函数的输入是一个矩阵,它不包含类概率,而是包含变量的数量,因此无法正确计算/聚合ROC。有人知道如何防止这种情况吗?我忘了告诉插入符号在某个地方输出类概率吗?
非常感谢帮助,因为Caret真的是一个很酷的软件包,如果我可以让它正常运行,它将为我节省大量的工作。
托拉尔夫
答案 0 :(得分:4)
getModelInfo
旨在获取train
的代码,但不会自动使用rfe
(我会在文档中记下这一点)。 rfe
不会查找名为probs
的广告位,并且概率预测不代表ROC摘要。
您可能希望将代码基于caretFuncs
,该代码旨在与rfe
一起使用,并且应该自动执行我认为您想要做的很多事情。
例如,在caretFuncs
中,pred
模块将创建类和概率预测:
function(object, x) {
tmp <- predict(object, x)
if(object$modelType == "Classification" &
!is.null(object$modelInfo$prob)) {
out <- cbind(data.frame(pred = tmp),
as.data.frame(predict(object, x, type = "prob")))
} else out <- tmp
out
}
您可以简单地将rankSVM
插入caretFuncs$rank
。
看看feature selection page on the website。它包含您需要的代码模块的详细信息。