我有一个data.frame,按 mean 列排序,如下所示:
10SE191_2 10SE207 10SE208 mean
7995783 12.64874 13.06391 12.69378 12.73937
8115327 12.69979 12.52285 12.41582 12.50363
8108370 12.58685 12.87818 12.66021 12.45720
7945680 12.46392 12.26087 11.77040 12.36518
7923547 11.98463 11.96649 12.50666 12.33138
8016718 12.81610 12.71548 12.48164 12.32703
我想将t.test
应用于每一行,使用强度值作为输入:df[i,1:3]
和强度较低的行的df[1,1:3]
vs _mean values_的t.test.我的代码使用 for循环但我目前的data.frame有超过20,000行和24列,需要很长时间。有任何改进代码的想法吗?
由于
代码:
temp <- matrix(-9, nrow=dim(matrix.order)[1], ncol=2) #create a result matrix
l <- dim(matrix.order)[1]
for (i in 1:l){
j <- 1+i
if (i < l | j +2 == l) { #avoid not enough y observations
mean.val <- matrix.order[j:l,4]
p <- t.test(matrix.order[i, 1:3], mean.val)
temp[i,1] <- p$p.value
}
else {temp[i,1] <- 1}
}
我dput
的 df
structure(list(`10SE191_2` = c(12.6487418898415, 12.6997932097351,12.5868508174491, 12.4639169398277, 11.9846348627906, 12.8160978540904), `10SE207` = c(13.0639063105224, 12.522848114011, 12.8781769160682, 12.260865493177, 11.9664905651469, 12.7154788700468), `10SE208` = c(12.6937808736673, 12.4158248856386, 12.6602128982717, 11.7704045448312, 12.5066604109231, 12.4816357798965), mean = c(12.7393707471856, 12.5036313008127, 12.4572035036992, 12.3651842840775, 12.3313821056582, 12.3270331271091)), .Names = c("10SE191_2", "10SE207", "10SE208", "mean"), row.names = c("7995783", "8115327", "8108370", "7945680", "7923547", "8016718"), class = "data.frame")
答案 0 :(得分:3)
您可以使用以下命令获取所有p值(如果可能):
apply(df, 1, function(x) {
y <- df$mean[df$mean < x[4]]
if(length(y) > 1)
t.test(x[1:3], y)$p.value
else NA
})
如果NA
没有足够的值,该函数将返回y
。
7995783 8115327 8108370 7945680 7923547 8016718
0.08199794 0.15627947 0.04993244 0.50885253 NA NA
答案 1 :(得分:1)
运行2E4 t.test
可能需要花费很多时间。尝试使用Rprof
查找热点。您可能还想使用mcapply
或类似的并行处理工具,因为您对每行的分析独立于所有其他数据(这意味着这是一项非常适合多核并行处理的任务)。