当一位朋友谈到编程竞赛时,我们想到了最好的方法是什么:
给定一个点列表,找到覆盖最多点的预定大小的圆心。如果有几个这样的圈子,唯一重要的是找到其中一个。
示例输入:1000点,500x500空间和60直径圆。
答案 0 :(得分:4)
除非我错过了一些明显的东西,否则我认为有一个简单的答案。
对于矩形区域MxN,点数P,半径R:
这是O(P),假设P是感兴趣的变量。
答案 1 :(得分:2)
非常快速的想法,不一定是正确的:
似乎是N ^ 2的复杂性,只要计算圆形区域的交点很容易
答案 2 :(得分:2)
到目前为止,我最好的方法是:
每个包含点的圆都必须有一个最左边的点。因此,它会列出一个可能位于圆的范围内的点右侧的所有点。它首先按x对点进行排序,以使扫描更加清晰。
然后它再次对它们进行排序,这次是它们所拥有的邻居的数量,以便首先检查具有最多邻居的点。
然后检查每个点,并且对于右边的每个点,它计算一个圆,其中这对点位于左边界。然后计算这样一个圆圈内的点数。
由于这些点已按潜力分类,因此一旦认为可能导致更好解决方案的所有节点,它就可以提前退出。
import random, math, time
from Tkinter import * # our UI
def sqr(x):
return x*x
class Point:
def __init__(self,x,y):
self.x = float(x)
self.y = float(y)
self.left = 0
self.right = []
def __repr__(self):
return "("+str(self.x)+","+str(self.y)+")"
def distance(self,other):
return math.sqrt(sqr(self.x-other.x)+sqr(self.y-other.y))
def equidist(left,right,dist):
u = (right.x-left.x)
v = (right.y-left.y)
if 0 != u:
r = math.sqrt(sqr(dist)-((sqr(u)+sqr(v))/4.))
theta = math.atan(v/u)
x = left.x+(u/2)-(r*math.sin(theta))
if x < left.x:
x = left.x+(u/2)+(r*math.sin(theta))
y = left.y+(v/2)-(r*math.cos(theta))
else:
y = left.y+(v/2)+(r*math.cos(theta))
else:
theta = math.asin(v/(2*dist))
x = left.x-(dist*math.cos(theta))
y = left.y + (v/2)
return Point(x,y)
class Vis:
def __init__(self):
self.frame = Frame(root)
self.canvas = Canvas(self.frame,bg="white",width=width,height=height)
self.canvas.pack()
self.frame.pack()
self.run()
def run(self):
self.count_calc0 = 0
self.count_calc1 = 0
self.count_calc2 = 0
self.count_calc3 = 0
self.count_calc4 = 0
self.count_calc5 = 0
self.prev_x = 0
self.best = -1
self.best_centre = []
for self.sweep in xrange(0,len(points)):
self.count_calc0 += 1
if len(points[self.sweep].right) <= self.best:
break
self.calc(points[self.sweep])
self.sweep = len(points) # so that draw() stops highlighting it
print "BEST",self.best+1, self.best_centre # count left-most point too
print "counts",self.count_calc0, self.count_calc1,self.count_calc2,self.count_calc3,self.count_calc4,self.count_calc5
self.draw()
def calc(self,p):
for self.right in p.right:
self.count_calc1 += 1
if (self.right.left + len(self.right.right)) < self.best:
# this can never help us
continue
self.count_calc2 += 1
self.centre = equidist(p,self.right,radius)
assert abs(self.centre.distance(p)-self.centre.distance(self.right)) < 1
count = 0
for p2 in p.right:
self.count_calc3 += 1
if self.centre.distance(p2) <= radius:
count += 1
if self.best < count:
self.count_calc4 += 4
self.best = count
self.best_centre = [self.centre]
elif self.best == count:
self.count_calc5 += 5
self.best_centre.append(self.centre)
self.draw()
self.frame.update()
time.sleep(0.1)
def draw(self):
self.canvas.delete(ALL)
# draw best circle
for best in self.best_centre:
self.canvas.create_oval(best.x-radius,best.y-radius,\
best.x+radius+1,best.y+radius+1,fill="red",\
outline="red")
# draw current circle
if self.sweep < len(points):
self.canvas.create_oval(self.centre.x-radius,self.centre.y-radius,\
self.centre.x+radius+1,self.centre.y+radius+1,fill="pink",\
outline="pink")
# draw all the connections
for p in points:
for p2 in p.right:
self.canvas.create_line(p.x,p.y,p2.x,p2.y,fill="lightGray")
# plot visited points
for i in xrange(0,self.sweep):
p = points[i]
self.canvas.create_line(p.x-2,p.y,p.x+3,p.y,fill="blue")
self.canvas.create_line(p.x,p.y-2,p.x,p.y+3,fill="blue")
# plot current point
if self.sweep < len(points):
p = points[self.sweep]
self.canvas.create_line(p.x-2,p.y,p.x+3,p.y,fill="red")
self.canvas.create_line(p.x,p.y-2,p.x,p.y+3,fill="red")
self.canvas.create_line(p.x,p.y,self.right.x,self.right.y,fill="red")
self.canvas.create_line(p.x,p.y,self.centre.x,self.centre.y,fill="cyan")
self.canvas.create_line(self.right.x,self.right.y,self.centre.x,self.centre.y,fill="cyan")
# plot unvisited points
for i in xrange(self.sweep+1,len(points)):
p = points[i]
self.canvas.create_line(p.x-2,p.y,p.x+3,p.y,fill="green")
self.canvas.create_line(p.x,p.y-2,p.x,p.y+3,fill="green")
radius = 60
diameter = radius*2
width = 800
height = 600
points = []
# make some points
for i in xrange(0,100):
points.append(Point(random.randrange(width),random.randrange(height)))
# sort points for find-the-right sweep
points.sort(lambda a, b: int(a.x)-int(b.x))
# work out those points to the right of each point
for i in xrange(0,len(points)):
p = points[i]
for j in xrange(i+1,len(points)):
p2 = points[j]
if p2.x > (p.x+diameter):
break
if (abs(p.y-p2.y) <= diameter) and \
p.distance(p2) < diameter:
p.right.append(p2)
p2.left += 1
# sort points in potential order for sweep, point with most right first
points.sort(lambda a, b: len(b.right)-len(a.right))
# debug
for p in points:
print p, p.left, p.right
# show it
root = Tk()
vis = Vis()
root.mainloop()
答案 3 :(得分:0)
如何使用聚类算法识别点群集。然后确定具有最大点数的簇。取最大点为圆心的簇的平均点,然后绘制圆圈。
MATLAB支持implementation的k-means algorithm,它会返回一个集群平均值和相应集群ID的二维数组(精确的矩阵)。
k-means的一个众所周知的反面是在手之前决定k(簇的数量)。这可以解决 - 人们可以从数据点学习k的值。请查看此paper。
我希望这会有所帮助。
欢呼声