我正在尝试从Lua中实现的Floyd-Warshall算法重建两个顶点之间的最低成本路径。
这是我到目前为止所写的内容:
function shallow_copy(g)
local h = {}
for k, v in pairs(g) do
h[k] = v
end
return h
end
function fw(g) -- g is an adjacency matrix representing the graph
local d = shaloow_copy(g)
for k = 1, #d do
for i = 1, #d do
for j = 1, #d do
d[i][j] = math.min(d[i][j], d[i][k] + d[k][j])
end
end
end
return d
end
这些函数给我一个矩阵,其中包含我的图g中每对顶点之间的长度(边数),这很棒。
我现在需要知道任何给定顶点之间的实际路径。维基百科可以方便地提供伪代码,但是 - 作为一个新手 - 我对如何实现它感到困惑。
以下是维基百科文章(https://en.wikipedia.org/wiki/Floyd - Warshall_algorithm#Path_reconstruction)中提供的伪代码:
let dist be a |V| × |V| array of minimum distances initialized to ∞ (infinity)
let next be a |V| × |V| array of vertex indices initialized to null
procedure FloydWarshallWithPathReconstruction ()
for each vertex v
dist[v][v] ← 0
for each edge (u,v)
dist[u][v] ← w(u,v) // the weight of the edge (u,v)
for k from 1 to |V|
for i from 1 to |V|
for j from 1 to |V|
if dist[i][k] + dist[k][j] < dist[i][j] then
dist[i][j] ← dist[i][k] + dist[k][j]
next[i][j] ← k
function Path (i, j)
if dist[i][j] = ∞ then
return "no path"
var intermediate ← next[i][j]
if intermediate = null then
return " " // the direct edge from i to j gives the shortest path
else
return Path(i, intermediate) + intermediate + Path(intermediate, j)
有谁知道如何在lua中实现这个伪代码?我是否需要重新编写我的短片lua代码,或者这个伪代码能以某种方式合并到我所拥有的内容中吗?
干杯!