我是matlab的新手,我需要一些关于matlab代码的帮助。我想制作粒子群优化,我想用鼠标点击来定义一个窗口大小为[min1,max1]和[min2,max2]的空间点。然后,初始化由n = 10个粒子组成的聚类,并搜索用户最初的点集。
我的代码是:
clear all;
numofdims = 30;
numofparticles = 50;
c1 = 2;
c2 = 2;
numofiterations = 1000;
V = zeros(50, 30);
initialpop = V;
Vmin = zeros(30, 1);
Vmax = Vmin;
Xmax = ones(30, 1) * 100;
Xmin = -Xmax;
pbestfits = zeros(50, 1);
worsts = zeros(50, 1);
bests = zeros(50, 1);
meanfits = zeros(50, 1);
pbests = zeros(50, 30);
initialpop = Xmin + (Xmax - Xmin) .* rand(numofparticles, numofdims);
X = initialpop;
fitnesses = testfunc1(X);
[minfit, minfitidx] = min(fitnesses);
gbestfit = minfit;
gbest = X(minfitidx, :);
for i = 1:numofdims
Vmax(i) = 0.2 * (Xmax(i) - Xmin(i));
Vmin(i) = -Vmax(i);
end
for t = 1:1000
w = 0.9 - 0.7 * (t / numofiterations);
for i = 1:numofparticles
if(fitnesses(i) < pbestfits(i))
pbestfits(i) = fitnesses(i);
pbests(i, :) = X(i, :);
end
end
for i = 1:numofparticles
for j = 1:numofdims
V(i, j) = min(max((w * V(i, j) + rand * c1 * (pbests(i, j) - X(i, j))...
+ rand * c2 * (gbest(j) - X(i, j))), Vmin(j)), Vmax(j));
X(i, j) = min(max((X(i, j) + V(i, j)), Xmin(j)), Xmax(j));
end
end
fitnesses = testfunc1(X);
[minfit, minfitidx] = min(fitnesses);
if(minfit < gbestfit)
gbestfit = minfit;
gbest = X(minfitidx, :);
end
worsts(t) = max(fitnesses);
bests(t) = gbestfit;
meanfits(t) = mean(fitnesses);
end
答案 0 :(得分:0)
您可以使用ginput
获取鼠标点击的坐标:
[x,y] = ginput;
然后相应地定义您的窗口。
答案 1 :(得分:0)
我做了以前的代码非常感谢你。
我找到了一个关于PSO的新代码,我想点击鼠标来定义一个窗口大小为[min1,max1]和[min2,max2]的空间点。
然后初始化由n = 10个粒子组成的聚类,并搜索用户最初的点集。
代码是这样的:
%% Initialization
clear
clc
n = 50; % Size of the swarm " no of birds "
bird_setp = 50; % Maximum number of "birds steps"
dim = 2; % Dimension of the problem
c2 =1.1; % PSO parameter C1
c1 = 0.12; % PSO parameter C2
w =0.9; % pso momentum or inertia
fitness=0*ones(n,bird_setp);
%-----------------------------%
% initialize the parameter %
%-----------------------------%
R1 = rand(dim, n);
R2 = rand(dim, n);
current_fitness =0*ones(n,1);
%------------------------------------------------%
% Initializing swarm and velocities and position %
%------------------------------------------------%
current_position = 10*(rand(dim, n)-.5);
velocity = .3*randn(dim, n) ;
local_best_position = current_position ;
%-------------------------------------------%
% Evaluate initial population %
%-------------------------------------------%
for i = 1:n
current_fitness(i) = Live_fn(current_position(:,i));
end
local_best_fitness = current_fitness ;
[global_best_fitness,g] = min(local_best_fitness) ;
for i=1:n
globl_best_position(:,i) = local_best_position(:,g) ;
end
%-------------------%
% VELOCITY UPDATE %
%-------------------%
velocity = w *velocity + c1*(R1.*(local_best_position-current_position)) + c2*(R2.*(globl_best_position-current_position));
%------------------%
% SWARMUPDATE %
%------------------%
current_position = current_position + velocity ;
%------------------------%
% evaluate anew swarm %
%------------------------%
%% Main Loop
iter = 0 ; % Iterations’counter
while ( iter < bird_setp )
iter = iter + 1;
for i = 1:n,
current_fitness(i) = Live_fn(current_position(:,i)) ;
end
for i = 1 : n
if current_fitness(i) < local_best_fitness(i)
local_best_fitness(i) = current_fitness(i);
local_best_position(:,i) = current_position(:,i) ;
end
end
[current_global_best_fitness,g] = min(local_best_fitness);
if current_global_best_fitness < global_best_fitness
global_best_fitness = current_global_best_fitness;
for i=1:n
globl_best_position(:,i) = local_best_position(:,g);
end
end
velocity = w *velocity + c1*(R1.*(local_best_position-current_position)) + c2*(R2.*(globl_best_position-current_position));
current_position = current_position + velocity;
x=current_position(1,:);
y=current_position(2,:);
clf
plot(x, y , 'h')
axis([-5 5 -5 5]);
pause(.2)
end % end of while loop its mean the end of all step that the birds move it
[Jbest_min,I] = min(current_fitness) % minimum fitness
current_position(:,I) % best solution
%