我试图从多变量函数G中定义一个变量g函数:
def dG(thetaf,psi,gamma) :
return 0.35*(cos(psi))**2*(2*sin(3*thetaf/2+2*gamma)+(1+4*sin(gamma)**2)*sin(thetaf/2)-sin(3*thetaf/2))+sin(psi)**2*sin(thetaf/2)
g = lambda thetaf: dG(thetaf,psi,gamma)
不幸的是,这不起作用,我收到的错误是:
只能将length-1数组转换为Python标量
答案 0 :(得分:1)
您必须定义一些默认值。如果使用关键字参数执行此操作,则甚至不需要定义单独的函数。
from numpy import sin, cos, arange
def dG(thetaf,psi=0.5,gamma=1) :
return 0.35*(cos(psi))**2*(2*sin(3*thetaf/2+2*gamma)+(1+4*sin(gamma)**2)*sin(thetaf/2)-sin(3*thetaf/2))+sin(psi)**2*sin(thetaf/2)
thetaf = arange(10)
print dG(thetaf)
>>> [ 0.4902 0.1475 0.5077 1.6392 1.757 0.4624 -0.472 -0.2416 -0.2771 -1.3398]
您实际上可以定义一个单独的函数,但使用关键字默认值是更清晰的选择。
g = lambda tf: dG(tf, 0.5, 1)
g(thetaf)
array([ 0.4902, 0.1475, 0.5077, 1.6392, 1.757 , 0.4624, -0.472 ,
-0.2416, -0.2771, -1.3398])
答案 1 :(得分:0)
下次,请以原样的格式将脚本包含在原始问题中。它使得帮助更快。
我认为这只是一个简单的错误。你分别从gamma和psi中得到theta和phi,但是你永远不会使用它们。你的意思是在g中使用那些作为你的参数吗?如果是这样,那么它应该看起来像这样
from numpy import sin, cos, arange, linspace, pi, zeros
import scipy.optimize as opt
def dG(thetaf, psi, gamma):
return 0.35*(cos(psi))**2*(2*sin(3*thetaf/2+2*gamma)+(1+4*sin(gamma)**2)*sin(thetaf/2)-sin(3*thetaf/2))+sin(psi)**2*sin(thetaf/2)
nt = 100
np = 100
gamma = linspace(0, pi/2, nt)
psi = linspace(0, pi/2, np)
x = zeros((nt, np))
for i, theta in enumerate(gamma):
for j, phi in enumerate(psi):
print('i = %d, j = %d') %(i, j)
g = lambda thetaf: dG(thetaf,phi,theta)
x[i,j] = opt.brenth(g,-pi/2,pi/2)