我有一个100,100个瓷砖的空白网格。起点是(0,0),目标是(99,99)。瓷砖是4路连接。
我的Floodfill算法在30ms内找到最短路径,但我的A *实现速度慢了大约10倍。
注意:无论网格或布局的大小如何,A *都会比我的填充更慢(3 - 10x)。因为洪水填充很简单,所以我怀疑我在A *中缺少某种优化。
这是功能。我使用Python的heapq来维护一个f排序列表。 “图表”包含所有节点,目标,邻居和g / f值。
import heapq
def solve_astar(graph):
open_q = []
heapq.heappush(open_q, (0, graph.start_point))
while open_q:
current = heapq.heappop(open_q)[1]
current.seen = True # Equivalent of being in a closed queue
for n in current.neighbours:
if n is graph.end_point:
n.parent = current
open_q = [] # Clearing the queue stops the process
# Ignore if previously seen (ie, in the closed queue)
if n.seen:
continue
# Ignore If n already has a parent and the parent is closer
if n.parent and n.parent.g <= current.g:
continue
# Set the parent, or switch parents if it already has one
if not n.parent:
n.parent = current
elif n.parent.g > current.g:
remove_from_heap(n, n.f, open_q)
n.parent = current
# Set the F score (simple, uses Manhattan)
set_f(n, n.parent, graph.end_point)
# Push it to queue, prioritised by F score
heapq.heappush(open_q, (n.f, n))
def set_f(point, parent, goal):
point.g += parent.g
h = get_manhattan(point, goal)
point.f = point.g + h
答案 0 :(得分:3)
这是一个打破平局的问题。在空网格上,从(0,0)开始到(99,99)会生成许多具有相同f分数的图块。
通过在启发式中添加微小的微调,将首先选择稍微靠近目的地的图块,这意味着可以更快地达到目标并且需要检查更少的图块。
def set_f(point, parent, goal):
point.g += parent.g
h = get_manhattan(point, goal) * 1.001
point.f = point.g + h
这导致了大约100倍的改进,使其比洪水填充更快。