我有一个向量lis
列表,我需要将其与另一个向量vec
lis <- list(c(2,0,0),c(1,1,0), c(1,0,1), c(0,2,0), c(0,1,1), c(0,0,2))
vec <- c(1,1,0)
所以我要么得到逻辑输出
[1] FALSE TRUE FALSE FALSE FALSE FALSE
或者只是匹配的lis
内的位置
我一直在尝试这些方面:
unlist(lis) %in% vec
但问题是数字的位置很重要,即区分我无法做到的c(1,1,0)
和c(1,0,1)
。我想避免for
循环,因为这需要非常有效(快速)。
答案 0 :(得分:12)
@agstudy和@Julius的答案涉及(长)lis
对象的循环;这里有一个替代方案,假设lis
的所有元素都与vec
的长度相同,以允许对未列出的引用进行矢量比较
shortloop <- function(x, lst)
colSums(matrix(unlist(lst) == x, length(x))) == length(x)
与lis
相比,vec
较长时速度很快。
longloop <- function(x, lst)
sapply(lst, identical, x)
l1 = rep(lis, 1000)
microbenchmark(shortloop(vec, l1), longloop(vec, l1))
## Unit: microseconds
## expr min lq median uq max neval
## shortloop(vec, l1) 793.009 808.2175 896.299 905.8795 1058.79 100
## longloop(vec, l1) 18732.338 21649.0770 21797.646 22107.7805 24788.86 100
有趣的是,与for
中的隐式循环相比,从性能角度来看,使用lapply
并不是那么糟糕(虽然更复杂,更容易出错)
longfor <- function(x, lst) {
res <- logical(length(lst))
for (i in seq_along(lst))
res[[i]] = identical(x, lst[[i]])
res
}
library(compiler)
longforc = cmpfun(longfor)
microbenchmark(longloop(vec, l1), longfor(vec, l1), longforc(vec, l1))
## Unit: milliseconds
## expr min lq median uq max neval
## longloop(vec, l1) 18.92824 21.20457 21.71295 21.80009 23.23286 100
## longfor(vec, l1) 23.64756 26.73481 27.43815 27.61699 28.33454 100
## longforc(vec, l1) 17.40998 18.28686 20.47844 20.75303 21.49532 100
答案 1 :(得分:9)
sapply(lis, identical, vec)
# [1] FALSE TRUE FALSE FALSE FALSE FALSE
基准:
l1 <- list(1:1000)[rep(1, 10000)]
v1 <- sample(1000)
AG <- function() sapply(l1,function(x)all(x==v1))
J <- function() sapply(l1, identical, v1)
microbenchmark(AG(), J())
# Unit: milliseconds
# expr min lq median uq max neval
# AG() 76.42732 84.26958 103.99233 111.62671 148.2824 100
# J() 32.14965 37.54198 47.34538 50.93195 104.4036 100
答案 2 :(得分:7)
sapply(lis,function(x)all(x==vec))
[1] FALSE TRUE FALSE FALSE FALSE FALSE